DOI QR코드

DOI QR Code

Metabolic Signaling to Epigenetic Alterations in Cancer

  • Kim, Jung-Ae (Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yeom, Young Il (Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2017.09.15
  • Accepted : 2017.11.01
  • Published : 2018.01.01

Abstract

Cancer cells reprogram cellular metabolism to support the malignant features of tumors, such as rapid growth and proliferation. The cancer promoting effects of metabolic reprogramming are found in many aspects: generating additional energy, providing more anabolic molecules for biosynthesis, and rebalancing cellular redox states in cancer cells. Metabolic pathways are considered the pipelines to supply metabolic cofactors of epigenetic modifiers. In this regard, cancer metabolism, whereby cellular metabolite levels are greatly altered compared to normal levels, is closely associated with cancer epigenetics, which is implicated in many stages of tumorigenesis. In this review, we provide an overview of cancer metabolism and its involvement in epigenetic modifications and suggest that the metabolic adaptation leading to epigenetic changes in cancer cells is an important non-genetic factor for tumor progression, which cooperates with genetic causes. Understanding the interaction of metabolic reprogramming with epigenetics in cancers may help to develop novel or highly improved therapeutic strategies that target cancer metabolism.

Keywords

References

  1. Agrawal-Singh, S., Isken, F., Agelopoulos, K., Klein, H. U., Thoennissen, N. H., Koehler, G., Hascher, A., Bäumer, N., Berdel, W. E., Thiede, C., Ehninger, G., Becker, A., Schlenke, P., Wang, Y., McClelland, M., Krug, U., Koschmieder, S., Büchner, T., Yu, D. Y., Singh, S. V., Hansen, K., Serve, H., Dugas, M. and Müller-Tidow, C. (2012) Genome-wide analysis of histone H3 acetylation patterns in AML identifies PRDX2 as an epigenetically silenced tumor suppressor gene. Blood 119, 2346-2357. https://doi.org/10.1182/blood-2011-06-358705
  2. Anderson, O. S., Sant, K. E. and Dolinoy, D. C. (2012) Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutr. Biochem. 23, 853-859. https://doi.org/10.1016/j.jnutbio.2012.03.003
  3. Bai, P., Canto, C., Oudart, H., Brunyánszki, A., Cen, Y., Thomas, C., Yamamoto, H., Huber, A., Kiss, B., Houtkooper, R. H., Schoonjans, K., Schreiber, V., Sauve, A. A., Menissier-de Murcia, J. and Auwerx, J. (2011) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461-468.
  4. Bardella, C., Pollard, P. J. and Tomlinson, I. (2011) SDH mutations in cancer. Biochim. Biophys. Acta 1807, 1432-1443.
  5. Belinsky, S. A., Nikula, K. J., Palmisano, W. A., Michels, R., Saccomanno, G., Gabrielson, E., Baylin, S. B. and Herman, J. G. (1998) Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc. Natl. Acad. Sci. U.S.A. 95, 11891-11896. https://doi.org/10.1073/pnas.95.20.11891
  6. Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber, S. L. and Lander, E. S. (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315-326. https://doi.org/10.1016/j.cell.2006.02.041
  7. Boukouris, A. E., Zervopoulos, S. D. and Michelakis, E. D. (2016) Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription. Trends Biochem. Sci. 41, 712-730. https://doi.org/10.1016/j.tibs.2016.05.013
  8. Brannon, A. R., Vakiani, E., Sylvester, B. E., Scott, S. N., McDermott, G., Shah, R. H., Kania, K., Viale, A., Oschwald, D. M., Vacic, V., Emde, A. K., Cercek, A., Yaeger, R., Kemeny, N. E., Saltz, L. B., Shia, J., D'Angelica, M. I., Weiser, M. R., Solit, D. B. and Berger, M. F. (2014) Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions. Genome Biol. 15, 454. https://doi.org/10.1186/s13059-014-0454-7
  9. Brown, R., Curry, E., Magnani, L., Wilhelm-Benartzi, C. S. and Borley, J. (2014) Poised epigenetic states and acquired drug resistance in cancer. Nat. Rev. Cancer 14, 747-753. https://doi.org/10.1038/nrc3819
  10. Bulusu, V., Tumanov, S., Michalopoulou, E., van den Broek, N. J., MacKay, G., Nixon, C., Dhayade, S., Schug, Z. T., Vande Voorde, J., Blyth, K., Gottlieb, E., Vazquez, A. and Kamphorst, J. J. (2017) Acetate recapturing by nuclear acetyl-CoA synthetase 2 prevents loss of histone acetylation during oxygen and serum limitation. Cell Rep. 18, 647-658. https://doi.org/10.1016/j.celrep.2016.12.055
  11. Cai, L., Sutter, B. M., Li, B. and Tu, B. P. (2011) Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42, 426-437. https://doi.org/10.1016/j.molcel.2011.05.004
  12. Candido, E. P., Reeves, R. and Davie, J. R. (1978) Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14, 105-113. https://doi.org/10.1016/0092-8674(78)90305-7
  13. Canto, C., Gerhart-Hines, Z., Feige, J. N., Lagouge, M., Noriega, L., Milne, J. C., Elliott, P. J., Puigserver, P. and Auwerx, J. (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060. https://doi.org/10.1038/nature07813
  14. Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D. and Thompson, C. B. (2015) Intracellular ${\alpha}$-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413-416. https://doi.org/10.1038/nature13981
  15. Delmore, J. E., Issa, G. C., Lemieux, M. E., Rahl, P. B., Shi, J., Jacobs, H. M., Kastritis, E., Gilpatrick, T., Paranal, R. M., Qi, J., Chesi, M., Schinzel, A. C., McKeown, M. R., Heffernan, T. P., Vakoc, C. R., Bergsagel, P. L., Ghobrial, I. M., Richardson, P. G., Young, R. A., Hahn, W. C., Anderson, K. C., Kung, A. L., Bradner, J. E. and Mitsiades, C. S. (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904-917. https://doi.org/10.1016/j.cell.2011.08.017
  16. Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A. et al. (2012) Landscape of transcription in human cells. Nature 489, 101-108. https://doi.org/10.1038/nature11233
  17. Donohoe, D. R., Collins, L. B., Wali, A., Bigler, R., Sun, W. and Bultman, S. J. (2012) The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell 48, 612-626. https://doi.org/10.1016/j.molcel.2012.08.033
  18. Easwaran, H., Tsai, H. C. and Baylin, S. B. (2014) Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell 54, 716-727.
  19. Ehrlich, M. (2009) DNA hypomethylation in cancer cells. Epigenomics 1, 239-259. https://doi.org/10.2217/epi.09.33
  20. Fan, J., Hitosugi, T., Chung, T. W., Xie, J., Ge, Q., Gu, T. L., Polakiewicz, R. D., Chen, G. Z., Boggon, T. J., Lonial, S., Khuri, F. R., Kang, S. and Chen, J. (2011) Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD(+) redox homeostasis in cancer cells. Mol. Cell. Biol. 31, 4938-4950. https://doi.org/10.1128/MCB.06120-11
  21. Fan, J., Krautkramer, K. A., Feldman, J. L. and Denu, J. M. (2015) Metabolic regulation of histone post-translational modifications. ACS Chem. Biol. 10, 95-108. https://doi.org/10.1021/cb500846u
  22. Feinberg, A. P., Koldobskiy, M. A. and Göndör, A. (2016) Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet. 17, 284-299. https://doi.org/10.1038/nrg.2016.13
  23. Figueroa, M. E., Abdel-Wahab, O., Lu, C., Ward, P. S., Patel, J., Shih, A. et al. (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553-567.
  24. Flavahan, W. A., Drier, Y., Liau, B. B., Gillespie, S. M., Venteicher, A. S., Stemmer-Rachamimov, A. O., Suva, M. L. and Bernstein, B. E. (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110-114. https://doi.org/10.1038/nature16490
  25. Friis, R. M., Wu, B. P., Reinke, S. N., Hockman, D. J., Sykes, B. D. and Schultz, M. C. (2009) A glycolytic burst drives glucose induction of global histone acetylation by picNuA4 and SAGA. Nucleic Acids Res. 37, 3969-3980. https://doi.org/10.1093/nar/gkp270
  26. Gaude, E. and Frezza, C. (2014) Defects in mitochondrial metabolism and cancer. Cancer Metab. 2, 10. https://doi.org/10.1186/2049-3002-2-10
  27. Harikumar, A. and Meshorer, E. (2015) Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Rep. 16, 1609-1619. https://doi.org/10.15252/embr.201541011
  28. Hay, N. (2016) Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat. Rev. Cancer 16, 635-649.
  29. Hino, S., Sakamoto, A., Nagaoka, K., Anan, K., Wang, Y., Mimasu, S., Umehara, T., Yokoyama, S., Kosai, K. and Nakao, M. (2012) FADdependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat. Commun. 3, 758. https://doi.org/10.1038/ncomms1755
  30. Hitosugi, T., Kang, S., Vander Heiden, M. G., Chung, T. W., Elf, S., Lythgoe, K., Dong, S., Lonial, S., Wang, X., Chen, G. Z., Xie, J., Gu, T. L., Polakiewicz, R. D., Roesel, J. L., Boggon, T. J., Khuri, F. R., Gilliland, D. G., Cantley, L. C., Kaufman, J. and Chen, J. (2009) Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci. Signal. 2, ra73.
  31. Hnisz, D., Abraham, B. J., Lee, T. I., Lau, A., Saint-André, V., Sigova, A. A., Hoke, H. A. and Young, R. A. (2013) Super-enhancers in the control of cell identity and disease. Cell 155, 934-947. https://doi.org/10.1016/j.cell.2013.09.053
  32. Hojfeldt, J. W., Agger, K. and Helin, K. (2013) Histone lysine demethylases as targets for anticancer therapy. Nat. Rev. Drug Discov. 12, 917-930. https://doi.org/10.1038/nrd4154
  33. Hwang, I. Y., Kwak, S., Lee, S., Kim, H., Lee, S. E., Kim, J. H., Kim, Y. A., Jeon, Y. K., Chung, D. H., Jin, X., Park, S., Jang, H., Cho, E. J. and Youn, H. D. (2016) Psat1-dependent fluctuations in ${\alpha}$-ketoglutarate affect the timing of ESC differentiation. Cell Metab. 24, 494-501. https://doi.org/10.1016/j.cmet.2016.06.014
  34. Intlekofer, A. M., Dematteo, R. G., Venneti, S., Finley, L. W., Lu, C., Judkins, A. R., Rustenburg, A. S., Grinaway, P. B., Chodera, J. D., Cross, J. R. and Thompson, C. B. (2015) Hypoxia Induces Production of L-2-Hydroxyglutarate. Cell Metab. 22, 304-311. https://doi.org/10.1016/j.cmet.2015.06.023
  35. Jones, P. A., Issa, J. P. and Baylin, S. (2016) Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 17, 630-641. https://doi.org/10.1038/nrg.2016.93
  36. Katoh, Y., Ikura, T., Hoshikawa, Y., Tashiro, S., Ito, T., Ohta, M., Kera, Y., Noda, T. and Igarashi, K. (2011) Methionine adenosyltransferase II serves as a transcriptional corepressor of Maf oncoprotein. Mol. Cell 41, 554-566.
  37. Kera, Y., Katoh, Y., Ohta, M., Matsumoto, M., Takano-Yamamoto, T. and Igarashi, K. (2013) Methionine adenosyltransferase II-dependent histone H3K9 methylation at the COX-2 gene locus. J. Biol. Chem. 288, 13592-13601. https://doi.org/10.1074/jbc.M112.429738
  38. Kim, S. Y. (2015) Cancer metabolism: targeting cancer universality. Arch. Pharm. Res. 38, 299-301. https://doi.org/10.1007/s12272-015-0551-5
  39. Latham, T., Mackay, L., Sproul, D., Karim, M., Culley, J., Harrison, D. J., Hayward, L., Langridge-Smith, P., Gilbert, N. and Ramsahoye, B. H. (2012) Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression. Nucleic Acids Res. 40, 4794-4803. https://doi.org/10.1093/nar/gks066
  40. Le, A., Lane, A. N., Hamaker, M., Bose, S., Gouw, A., Barbi, J., Tsukamoto, T., Rojas, C. J., Slusher, B. S., Zhang, H., Zimmerman, L. J., Liebler, D. C., Slebos, R. J., Lorkiewicz, P. K., Higashi, R. M., Fan, T. W. and Dang, C. V. (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 15, 110-121. https://doi.org/10.1016/j.cmet.2011.12.009
  41. Lee, J. V., Carrer, A., Shah, S., Snyder, N. W., Wei, S., Venneti, S. et al. (2014) Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 20, 306-319. https://doi.org/10.1016/j.cmet.2014.06.004
  42. Letouze, E., Martinelli, C., Loriot, C., Burnichon, N., Abermil, N., Ottolenghi, C., Janin, M., Menara, M., Nguyen, A. T., Benit, P., Buffet, A., Marcaillou, C., Bertherat, J., Amar, L., Rustin, P., De Reyniès, A., Gimenez-Roqueplo, A. P. and Favier, J. (2013) SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23, 739-752.
  43. Lockwood, W. W., Zejnullahu, K., Bradner, J. E. and Varmus H. (2012) Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins. Proc. Natl. Acad. Sci. U.S.A. 109, 19408-19413. https://doi.org/10.1073/pnas.1216363109
  44. Lu, C., Ward, P. S., Kapoor, G. S., Rohle, D., Turcan, S., Abdel-Wahab, O., Edwards, C. R., Khanin, R., Figueroa, M. E., Melnick, A., Wellen, K. E., O'Rourke, D. M., Berger, S. L., Chan, T. A., Levine, R. L., Mellinghoff, I. K. and Thompson, C. B. (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474-478.
  45. Maddocks, O. D., Labuschagne, C. F., Adams, P. D. and Vousden, K. H. (2016) Serine metabolism supports the methionine cycle and DNA/RNA Methylation through De Novo ATP synthesis in cancer cells. Mol. Cell 61, 210-221.
  46. Martinez-Outschoorn, U. E., Prisco, M., Ertel, A., Tsirigos, A., Lin, Z., Pavlides, S., Wang, C., Flomenberg, N., Knudsen, E. S., Howell, A., Pestell, R. G., Sotgia, F. and Lisanti, M. P. (2011) Ketones and lactate increase cancer cell "stemness," driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics. Cell Cycle 10, 1271-1286. https://doi.org/10.4161/cc.10.8.15330
  47. Mashimo, T., Pichumani, K., Vemireddy, V., Hatanpaa, K. J., Singh, D. K., Sirasanagandla, S., Nannepaga, S., Piccirillo, S. G., Kovacs, Z., Foong, C., Huang, Z., Barnett, S., Mickey, B. E., DeBerardinis, R. J., Tu, B. P., Maher, E. A. and Bachoo, R. M. (2014) Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159, 1603-1614. https://doi.org/10.1016/j.cell.2014.11.025
  48. McDonald, O. G., Li, X., Saunders, T., Tryggvadottir, R., Mentch, S. J., Warmoes, M. O., Word, A. E., Carrer, A., Salz, T. H., Natsume, S., Stauffer, K. M., Makohon-Moore, A., Zhong, Y., Wu, H., Wellen, K. E., Locasale, J. W., Iacobuzio-Donahue, C. A. and Feinberg, A. P. (2017) Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat. Genet. 49, 367-376. https://doi.org/10.1038/ng.3753
  49. McDonnell, E., Crown, S. B., Fox, D. B., Kitir, B., Ilkayeva, O. R., Olsen, C. A., Grimsrud, P. A. and Hirschey, M. D. (2016) Lipids reprogram metabolism to become a major carbon source for histone acetylation. Cell Rep. 17, 1463-1472. https://doi.org/10.1016/j.celrep.2016.10.012
  50. Mentch, S. J., Mehrmohamadi, M., Huang, L., Liu, X., Gupta, D., Mattocks, D., Gomez Padilla, P., Ables, G., Bamman, M. M., Thalacker-Mercer, A. E., Nichenametla, S. N. and Locasale, J. W. (2015) Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 22, 861-873.
  51. Metallo, C. M., Gameiro, P. A., Bell, E. L., Mattaini, K. R., Yang, J., Hiller, K., Jewell, C. M., Johnson, Z. R., Irvine, D. J., Guarente, L., Kelleher, J. K., Vander Heiden, M. G., Iliopoulos, O. and Stephanopoulos, G. (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380-384.
  52. Migita, T., Narita, T., Nomura, K., Miyagi, E., Inazuka, F., Matsuura, M., Ushijima, M., Mashima, T., Seimiya, H., Satoh, Y., Okumura, S., Nakagawa, K. and Ishikawa, Y. (2008) ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. Cancer Res. 68, 8547-8554.
  53. Miller, D. M., Thomas, S. D., Islam, A., Muench, D. and Sedoris, K. (2012) c-Myc and cancer metabolism. Clin. Cancer Res. 18, 5546-5553. https://doi.org/10.1158/1078-0432.CCR-12-0977
  54. Morrish, F., Noonan, J., Perez-Olsen, C., Gafken, P. R., Fitzgibbon, M., Kelleher, J., VanGilst, M. and Hockenbery, D. (2010) Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J. Biol. Chem. 285, 36267-36274. https://doi.org/10.1074/jbc.M110.141606
  55. Mullen, A. R., Wheaton, W. W., Jin, E. S., Chen, P. H., Sullivan, L. B., Cheng, T., Yang, Y., Linehan, W. M., Chandel, N. S. and DeBerardinis, R. J. (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385-388.
  56. Newman, J. C. and Verdin, E. (2014) ${\beta}$-hydroxybutyrate: much more than a metabolite. Diabetes Res. Clin. Pract. 106, 173-181.
  57. Osthus, R. C., Shim, H., Kim, S., Li, Q., Reddy, R., Mukherjee, M., Xu, Y., Wonsey, D., Lee, L. A. and Dang, C. V. (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem. 275, 21797-21800.
  58. Pan, M., Reid, M. A., Lowman, X. H., Kulkarni, R. P., Tran, T. Q., Liu, X., Yang, Y, Hernandez-Davies, J. E., Rosales, K. K., Li, H., Hugo, W., Song, C., Xu, X., Schones, D. E., Ann, D. K., Gradinaru, V., Lo, R. S., Locasale, J. W. and Kong, M. (2016) Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat. Cell Biol. 18, 1090-1101.
  59. Parsons, D. W., Jones, S., Zhang, X., Lin, J. C., Leary, R. J., Angenendt, P. et al. (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807-1812. https://doi.org/10.1126/science.1164382
  60. Pavlova, N. N. and Thompson, C. B. (2016) The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27-47.
  61. Pietrocola, F., Bravo-San Pedro, J. M., Madeo, F. and Kroemer, G. (2015) Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805-821. https://doi.org/10.1016/j.cmet.2015.05.014
  62. Rankin, E. B. and Giaccia, A. J. (2016) Hypoxic control of metastasis. Science 352, 175-180. https://doi.org/10.1126/science.aaf4405
  63. Roe, J. S., Hwang, C. I., Somerville, T. D. D., Milazzo, J. P., Lee, E. J., Da Silva, B. et al. (2017) Enhancer reprogramming promotes pancreatic cancer metastasis. Cell 170, 875-888.e20. https://doi.org/10.1016/j.cell.2017.07.007
  64. Semenza, G. L. (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Invest. 123, 3664-3671. https://doi.org/10.1172/JCI67230
  65. Seto, E. and Yoshida, M. (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6, a018713. https://doi.org/10.1101/cshperspect.a018713
  66. Shi, L. and Tu, B. P. (2015) Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr. Opin. Cell Biol. 33, 125-131. https://doi.org/10.1016/j.ceb.2015.02.003
  67. Shim, E. H., Livi, C. B., Rakheja, D., Tan, J., Benson, D., Parekh, V., Kho, E. Y., Ghosh, A. P., Kirkman, R., Velu, S., Dutta, S., Chenna, B., Rea, S. L., Mishur, R. J., Li, Q., Johnson-Pais, T. L., Guo, L., Bae, S., Wei, S., Block, K. and Sudarshan, S. (2014) L-2-Hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer. Cancer Discov. 4, 1290-1298. https://doi.org/10.1158/2159-8290.CD-13-0696
  68. Shimazu, T., Hirschey, M. D., Newman, J., He, W., Shirakawa, K., Le Moan, N., Grueter, C. A., Lim, H., Saunders, L. R., Stevens, R. D., Newgard, C. B., Farese, R. V., Jr., de Cabo, R., Ulrich, S., Akassoglou, K. and Verdin, E. (2013) Suppression of oxidative stress by ${\beta}$-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211-214. https://doi.org/10.1126/science.1227166
  69. Shyh-Chang, N., Locasale, J. W., Lyssiotis, C. A., Zheng, Y., Teo, R. Y., Ratanasirintrawoot, S., Zhang, J., Onder, T., Unternaehrer, J. J., Zhu, H., Asara, J. M., Daley, G. Q. and Cantley, L. C. (2013) Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339, 222-226. https://doi.org/10.1126/science.1226603
  70. Song, Y., Wu, F. and Wu, J. (2016) Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. J. Hematol. Oncol. 9, 49. https://doi.org/10.1186/s13045-016-0279-9
  71. Sutendra, G., Kinnaird, A., Dromparis, P., Paulin, R., Stenson, T. H., Haromy, A., Hashimoto, K., Zhang, N., Flaim, E. and Michelakis, E. D. (2014) A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158, 84-97. https://doi.org/10.1016/j.cell.2014.04.046
  72. Suzuki, K., Sakaguchi, M., Tanaka, S., Yoshimoto, T. and Takaoka, M. (2014) Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells. Biochem. Biophys. Res. Commun. 443, 91-96. https://doi.org/10.1016/j.bbrc.2013.11.051
  73. TeSlaa, T., Chaikovsky, A. C., Lipchina, I., Escobar, S. L., Hochedlinger, K., Huang, J., Graeber, T. G., Braas, D. and Teitell, M. A. (2016) ${\alpha}$-ketoglutarate accelerates the initial differentiation of primed human pluripotent stem cells. Cell Metab. 24, 485-493. https://doi.org/10.1016/j.cmet.2016.07.002
  74. Valastyan, S. and Weinberg, R. A. (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275-292. https://doi.org/10.1016/j.cell.2011.09.024
  75. van den Beucken, T., Koch, E., Chu, K., Rupaimoole, R., Prickaerts, P., Adriaens, M., Voncken, J. W., Harris, A. L., Buffa, F. M., Haider, S., Starmans, M. H. W., Yao, C. Q., Ivan, M., Ivan, C., Pecot, C. V., Boutros, P. C., Sood, A. K., Koritzinsky, M. and Wouters, B. G. (2014) Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nat. Commun. 5, 5203.
  76. Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033. https://doi.org/10.1126/science.1160809
  77. Vander Heiden, M. G. and DeBerardinis, R. J. (2017) Understanding the intersections between metabolism and cancer biology. Cell 168, 657-669. https://doi.org/10.1016/j.cell.2016.12.039
  78. Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Peng, W., Zhang, M. Q. and Zhao, K. (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40, 897-903. https://doi.org/10.1038/ng.154
  79. Warburg, O. (1956) On respiratory impairment in cancer cells. Science 124, 269-270.
  80. Ward, P. S., Patel, J., Wise, D. R., Abdel-Wahab, O., Bennett, B. D., Coller, H. A., Cross, J. R., Fantin, V. R., Hedvat, C. V., Perl, A. E., Rabinowitz, J. D., Carroll, M., Su, S. M., Sharp, K. A., Levine, R. L. and Thompson, C. B. (2010) The common feature of leukemiaassociated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting ${\alpha}$-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225-234. https://doi.org/10.1016/j.ccr.2010.01.020
  81. Wellen, K. E., Hatzivassiliou, G., Sachdeva, U. M., Bui, T. V., Cross, J. R. and Thompson, C. B. (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076-1080. https://doi.org/10.1126/science.1164097
  82. Wise, D. R., DeBerardinis, R. J., Mancuso, A., Sayed, N., Zhang, X. Y., Pfeiffer, H. K., Nissim, I., Daikhin, E., Yudkoff, M., McMahon, S. B. and Thompson, C. B. (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. U.S.A. 105, 18782-18787. https://doi.org/10.1073/pnas.0810199105
  83. Wise, D. R., Ward, P. S., Shay, J. E., Cross, J. R., Gruber, J. J., Sachdeva, U. M., Platt, J. M., DeMatteo, R. G., Simon, M. C. and Thompson, C. B. (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of ${\alpha}$-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. U.S.A. 108, 19611-19616. https://doi.org/10.1073/pnas.1117773108
  84. Xiao, M., Yang, H., Xu, W., Ma, S., Lin, H., Zhu, H., Liu, L., Liu, Y., Yang, C., Xu, Y., Zhao, S., Ye, D., Xiong, Y. and Guan, K. L. (2012) Inhibition of ${\alpha}$-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26, 1326-1338.
  85. Yachida, S., Jones, S., Bozic, I., Antal, T., Leary, R., Fu, B., Kamiyama, M., Hruban, R. H., Eshleman, J. R., Nowak, M. A., Velculescu, V. E., Kinzler, K. W., Vogelstein, B. and Iacobuzio-Donahue, C. A. (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114-1117.
  86. Yang, S. J., Park, Y. S., Cho, J. H., Moon, B., An, H., Lee, J. Y., Xie, Z., Wang, Y., Pocalyko, D., Lee, D. C., Sohn, H. A., Kang, M., Kim, J. Y., Kim, E., Park, K. C., Kim, J. A. and Yeom, Y. I. (2017) Regulation of hypoxia responses by flavin adenine dinucleotide-dependent modulation of HIF-$1{\alpha}$ protein stability. EMBO J. 36, 1011-1028. https://doi.org/10.15252/embj.201694408
  87. Yang, W., Xia, Y., Hawke, D., Li, X., Liang, J., Xing, D., Aldape, K., Hunter, T., Alfred Yung, W. K. and Lu, Z. (2012) PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150, 685-696. https://doi.org/10.1016/j.cell.2012.07.018
  88. Ying, H., Kimmelman, A. C., Lyssiotis, C. A., Hua, S., Chu, G. C., Fletcher-Sananikone, E. et al. (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656-670. https://doi.org/10.1016/j.cell.2012.01.058
  89. Yun, J., Rago, C., Cheong, I., Pagliarini, R., Angenendt, P., Rajagopalan, H., Schmidt, K., Willson, J. K., Markowitz, S., Zhou, S., Diaz, L. A., Jr., Velculescu, V. E., Lengauer, C., Kinzler, K. W., Vogelstein, B. and Papadopoulos, N. (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325, 1555-1559.

Cited by

  1. Cancer Metabolism: a Hope for Curing Cancer vol.26, pp.1, 2018, https://doi.org/10.4062/biomolther.2017.300
  2. Metabolism and Epigenetic Interplay in Cancer: Regulation and Putative Therapeutic Targets vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00427
  3. The Complex Interplay between Metabolic Reprogramming and Epigenetic Alterations in Renal Cell Carcinoma vol.10, pp.4, 2019, https://doi.org/10.3390/genes10040264
  4. HSP90 Molecular Chaperones, Metabolic Rewiring, and Epigenetics: Impact on Tumor Progression and Perspective for Anticancer Therapy vol.8, pp.6, 2018, https://doi.org/10.3390/cells8060532
  5. Metabolic Dysregulations and Epigenetics: A Bidirectional Interplay that Drives Tumor Progression vol.8, pp.8, 2018, https://doi.org/10.3390/cells8080798
  6. Characterization of the Golgi scaffold protein PAQR3, and its role in tumor suppression and metabolic pathway compartmentalization vol.12, pp.None, 2020, https://doi.org/10.2147/cmar.s210919
  7. Targeting Lipid Metabolism in Liver Cancer vol.59, pp.41, 2018, https://doi.org/10.1021/acs.biochem.0c00477
  8. Interweaving Tumor Heterogeneity into the Cancer Epigenetic/Metabolic Axis vol.33, pp.13, 2018, https://doi.org/10.1089/ars.2019.7942
  9. One Omics Approach Does Not Rule Them All: The Metabolome and the Epigenome Join Forces in Haematological Malignancies vol.5, pp.4, 2018, https://doi.org/10.3390/epigenomes5040022