DOI QR코드

DOI QR Code

Imaging Cancer Metabolism

  • Momcilovic, Milica (Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine) ;
  • Shackelford, David B. (Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine)
  • Received : 2017.10.24
  • Accepted : 2017.11.13
  • Published : 2018.01.01

Abstract

It is widely accepted that altered metabolism contributes to cancer growth and has been described as a hallmark of cancer. Our view and understanding of cancer metabolism has expanded at a rapid pace, however, there remains a need to study metabolic dependencies of human cancer in vivo. Recent studies have sought to utilize multi-modality imaging (MMI) techniques in order to build a more detailed and comprehensive understanding of cancer metabolism. MMI combines several in vivo techniques that can provide complementary information related to cancer metabolism. We describe several non-invasive imaging techniques that provide both anatomical and functional information related to tumor metabolism. These imaging modalities include: positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS) that uses hyperpolarized probes and optical imaging utilizing bioluminescence and quantification of light emitted. We describe how these imaging modalities can be combined with mass spectrometry and quantitative immunochemistry to obtain more complete picture of cancer metabolism. In vivo studies of tumor metabolism are emerging in the field and represent an important component to our understanding of how metabolism shapes and defines cancer initiation, progression and response to treatment. In this review we describe in vivo based studies of cancer metabolism that have taken advantage of MMI in both pre-clinical and clinical studies. MMI promises to advance our understanding of cancer metabolism in both basic research and clinical settings with the ultimate goal of improving detection, diagnosis and treatment of cancer patients.

Keywords

References

  1. Albers, M. J., Bok, R., Chen, A. P., Cunningham, C. H., Zierhut, M. L., Zhang, V. Y., Kohler, S. J., Tropp, J., Hurd, R. E., Yen, Y. F., Nelson, S. J., Vigneron, D. B. and Kurhanewicz, J. (2008) Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res. 68, 8607-8615. https://doi.org/10.1158/0008-5472.CAN-08-0749
  2. Ardenkjaer-Larsen, J. H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M. H., Servin, R., Thaning, M. and Golman, K. (2003) Increase in signal-to-noise ratio of > 10,000 times in liquidstate NMR. Proc. Natl. Acad. Sci. U.S.A. 100, 10158-10163. https://doi.org/10.1073/pnas.1733835100
  3. Braas, D., Ahler, E., Tam, B., Nathanson, D., Riedinger, M., Benz, M. R., Smith, K. B., Eilber, F. C., Witte, O. N., Tap, W. D., Wu, H. and Christofk, H. R. (2012) Metabolomics strategy reveals subpopulation of liposarcomas sensitive to gemcitabine treatment. Cancer Discov. 2, 1109-1117. https://doi.org/10.1158/2159-8290.CD-12-0197
  4. Brenner, D. J. and Hall, E. J. (2007) Computed tomography--an increasing source of radiation exposure. N. Engl. J. Med. 357, 2277-2284. https://doi.org/10.1056/NEJMra072149
  5. Cabella, C., Karlsson, M., Canape, C., Catanzaro, G., Colombo Serra, S., Miragoli, L., Poggi, L., Uggeri, F., Venturi, L., Jensen, P. R., Lerche, M. H. and Tedoldi, F. (2013) In vivo and in vitro liver cancer metabolism observed with hyperpolarized [5-(13)C]glutamine. J. Magn. Reson. 232, 45-52. https://doi.org/10.1016/j.jmr.2013.04.010
  6. Canape, C., Catanzaro, G., Terreno, E., Karlsson, M., Lerche, M. H. and Jensen, P. R. (2015) Probing treatment response of glutaminolytic prostate cancer cells to natural drugs with hyperpolarized [5-(13) C]glutamine. Magn. Reson. Med. 73, 2296-2305. https://doi.org/10.1002/mrm.25360
  7. Cavalli, L. R., Varella-Garcia, M. and Liang, B. C. (1997) Diminished tumorigenic phenotype after depletion of mitochondrial DNA. Cell Growth Differ. 8, 1189-1198.
  8. Chaumeil, M. M., Ozawa, T., Park, I., Scott, K., James, C. D., Nelson, S. J. and Ronen, S. M. (2012) Hyperpolarized 13C MR spectroscopic imaging can be used to monitor Everolimus treatment in vivo in an orthotopic rodent model of glioblastoma. Neuroimage 59, 193-201.
  9. Davidson, S. M., Papagiannakopoulos, T., Olenchock, B. A., Heyman, J. E., Keibler, M. A., Luengo, A., Bauer, M. R., Jha, A. K., O'Brien, J. P., Pierce, K. A., Gui, D. Y., Sullivan, L. B., Wasylenko, T. M., Subbaraj, L., Chin, C. R., Stephanopolous, G., Mott, B. T., Jacks, T., Clish, C. B. and Vander Heiden, M. G. (2016) Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab. 23, 517-528. https://doi.org/10.1016/j.cmet.2016.01.007
  10. Day, S. E., Kettunen, M. I., Gallagher, F. A., Hu, D. E., Lerche, M., Wolber, J., Golman, K., Ardenkjaer-Larsen, J. H. and Brindle, K. M. (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat. Med. 13, 1382-1387.
  11. de Vries, A., Custers, E., Lub, J., van den Bosch, S., Nicolay, K. and Grull, H. (2010) Block-copolymer-stabilized iodinated emulsions for use as CT contrast agents. Biomaterials 31, 6537-6544.
  12. Deroose, C. M., De, A., Loening, A. M., Chow, P. L., Ray, P., Chatziioannou, A. F. and Gambhir, S. S. (2007) Multimodality imaging of tumor xenografts and metastases in mice with combined small-animal PET, small-animal CT, and bioluminescence imaging. J. Nucl. Med. 48, 295-303.
  13. Desjardins, P., Frost, E. and Morais, R. (1985) Ethidium bromideinduced loss of mitochondrial DNA from primary chicken embryo fibroblasts. Mol. Cell. Biol. 5, 1163-1169. https://doi.org/10.1128/MCB.5.5.1163
  14. Di Gialleonardo, V., Wilson, D. M. and Keshari, K. R. (2016) The potential of metabolic imaging. Semin. Nucl. Med. 46, 28-39. https://doi.org/10.1053/j.semnuclmed.2015.09.004
  15. Dragulescu-Andrasi, A., Liang, G. and Rao, J. (2009) In vivo bioluminescence imaging of furin activity in breast cancer cells using bioluminogenic substrates. Bioconjug. Chem. 20, 1660-1666. https://doi.org/10.1021/bc9002508
  16. Dutta, P., Le, A., Vander Jagt, D. L., Tsukamoto, T., Martinez, G. V., Dang, C. V. and Gillies, R. J. (2013) Evaluation of LDH-A and glutaminase inhibition in vivo by hyperpolarized 13C-pyruvate magnetic resonance spectroscopy of tumors. Cancer Res. 73, 4190-4195. https://doi.org/10.1158/0008-5472.CAN-13-0465
  17. Duvel, K., Yecies, J. L., Menon, S., Raman, P., Lipovsky, A. I., Souza, A. L., Triantafellow, E., Ma, Q., Gorski, R., Cleaver, S., Vander Heiden, M. G., MacKeigan, J. P., Finan, P. M., Clish, C. B., Murphy, L. O. and Manning, B. D. (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171-183. https://doi.org/10.1016/j.molcel.2010.06.022
  18. Dworsky, E. M., Hegde, V., Loftin, A. H., Richman, S., Hu, Y., Lord, E., Francis, K. P., Miller, L. S., Wang, J. C., Scaduto, A. and Bernthal, N. M. (2017) Novel in vivo mouse model of implant related spine infection. J. Orthop. Res. 35, 193-199. https://doi.org/10.1002/jor.23273
  19. Dykens, J. A., Jamieson, J., Marroquin, L., Nadanaciva, S., Billis, P. A. and Will, Y. (2008) Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobicallypoised HepG2 cells and human hepatocytes in vitro. Toxicol. Appl. Pharmacol. 233, 203-210.
  20. Elstrom, R. L., Bauer, D. E., Buzzai, M., Karnauskas, R., Harris, M. H., Plas, D. R., Zhuang, H., Cinalli, R. M., Alavi, A., Rudin, C. M. and Thompson, C. B. (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64, 3892-3899. https://doi.org/10.1158/0008-5472.CAN-03-2904
  21. Even, A. J. G., Reymen, B., La Fontaine, M. D., Das, M., Jochems, A., Mottaghy, F. M., Belderbos, J. S. A., De Ruysscher, D., Lambin, P. and van Elmpt, W. (2017) Predicting tumor hypoxia in non-small cell lung cancer by combining CT, FDG PET and dynamic contrastenhanced CT. Acta Oncol. 1-6.
  22. Fan, F. and Wood, K. V. (2007) Bioluminescent assays for highthroughput screening. Assay Drug Dev. Technol. 5, 127-136. https://doi.org/10.1089/adt.2006.053
  23. Fan, T. W., Higashi, R. M. and Lane, A. N. (2006) Integrating metabolomics and transcriptomics for probing SE anticancer mechanisms. Drug Metab. Rev. 38, 707-732. https://doi.org/10.1080/03602530600959599
  24. Fan, T. W., Lane, A. N. and Higashi, R. M. (2004) The promise of metabolomics in cancer molecular therapeutics. Curr. Opin. Mol. Ther. 6, 584-592.
  25. Fan, T. W., Lane, A. N., Higashi, R. M., Farag, M. A., Gao, H., Bousamra, M. and Miller, D. M. (2009) Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM) Mol. Cancer 8, 41. https://doi.org/10.1186/1476-4598-8-41
  26. Gallagher, F. A., Kettunen, M. I., Day, S. E., Lerche, M. and Brindle, K. M. (2008) 13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magn. Reson. Med. 60, 253-257. https://doi.org/10.1002/mrm.21650
  27. Geraghty, P. R., van den Bosch, M. A., Spielman, D. M., Hunjan, S., Birdwell, R. L., Fong, K. J., Stables, L. A., Zakhour, M., Herfkens, R. J. and Ikeda, D. M. (2008) MRI and (1)H MRS of the breast: presence of a choline peak as malignancy marker is related to K21 value of the tumor in patients with invasive ductal carcinoma. Breast J. 14, 574-580. https://doi.org/10.1111/j.1524-4741.2008.00650.x
  28. Golman, K., Zandt, R. I., Lerche, M., Pehrson, R. and Ardenkjaer- Larsen, J. H. (2006) Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res. 66, 10855-10860. https://doi.org/10.1158/0008-5472.CAN-06-2564
  29. Grierson, J. R. and Shields, A. F. (2000) Radiosynthesis of 3'-deoxy-3'-[(18)F]fluorothymidine: [(18)F]FLT for imaging of cellular proliferation in vivo. Nucl. Med. Biol. 27, 143-156. https://doi.org/10.1016/S0969-8051(99)00104-3
  30. Gross, M. I., Demo, S. D., Dennison, J. B., Chen, L., Chernov-Rogan, T., Goyal, B., Janes, J. R., Laidig, G. J., Lewis, E. R., Li, J., Mackinnon, A. L., Parlati, F., Rodriguez, M. L., Shwonek, P. J., Sjogren, E. B., Stanton, T. F., Wang, T., Yang, J., Zhao, F. and Bennett, M. K. (2014) Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13, 890-901.
  31. Gutte, H., Hansen, A. E., Johannesen, H. H., Clemmensen, A. E., Ardenkjaer-Larsen, J. H., Nielsen, C. H. and Kjaer, A. (2015) The use of dynamic nuclear polarization (13)C-pyruvate MRS in cancer. Am. J. Nucl. Med. Mol. Imaging 5, 548-560.
  32. Haddadin, I. S., McIntosh, A., Meisamy, S., Corum, C., Styczynski Snyder, A. L., Powell, N. J., Nelson, M. T., Yee, D., Garwood, M. and Bolan, P. J. (2009) Metabolite quantification and high-field MRS in breast cancer. NMR Biomed. 22, 65-76. https://doi.org/10.1002/nbm.1217
  33. Hassanein, M., Hight, M. R., Buck, J. R., Tantawy, M. N., Nickels, M. L., Hoeksema, M. D., Harris, B. K., Boyd, K., Massion, P. P. and Manning, H. C. (2016) Preclinical evaluation of 4-[18F]Fluoroglutamine PET to assess ASCT2 expression in lung cancer. Mol. Imaging Biol. 18, 18-23. https://doi.org/10.1007/s11307-015-0862-4
  34. Henkin, A. H., Cohen, A. S., Dubikovskaya, E. A., Park, H. M., Nikitin, G. F., Auzias, M. G., Kazantzis, M., Bertozzi, C. R. and Stahl, A. (2012) Real-time noninvasive imaging of fatty acid uptake in vivo. ACS Chem. Biol. 7, 1884-1891. https://doi.org/10.1021/cb300194b
  35. Hensley, C. T., Faubert, B., Yuan, Q., Lev-Cohain, N., Jin, E., Kim, J., Jiang, L., Ko, B., Skelton, R., Loudat, L., Wodzak, M., Klimko, C., McMillan, E., Butt, Y., Ni, M., Oliver, D., Torrealba, J., Malloy, C. R., Kernstine, K., Lenkinski, R. E. and DeBerardinis, R. J. (2016) Metabolic heterogeneity in human lung tumors. Cell 164, 681-694. https://doi.org/10.1016/j.cell.2015.12.034
  36. Hickson, J., Ackler, S., Klaubert, D., Bouska, J., Ellis, P., Foster, K., Oleksijew, A., Rodriguez, L., Schlessinger, S., Wang, B. and Frost, D. (2010) Noninvasive molecular imaging of apoptosis in vivo using a modified firefly luciferase substrate, Z-DEVD-aminoluciferin. Cell Death Differ. 17, 1003-1010. https://doi.org/10.1038/cdd.2009.205
  37. Hu, H., Juvekar, A., Lyssiotis, C. A., Lien, E. C., Albeck, J. G., Oh, D., Varma, G., Hung, Y. P., Ullas, S., Lauring, J., Seth, P., Lundquist, M. R., Tolan, D. R., Grant, A. K., Needleman, D. J., Asara, J. M., Cantley, L. C. and Wulf, G. M. (2016) Phosphoinositide 3-kinase regulates glycolysis through mobilization of aldolase from the actin cytoskeleton. Cell 164, 433-446. https://doi.org/10.1016/j.cell.2015.12.042
  38. Hwang, J. P., Lim, I., Kong, C. B., Jeon, D. G., Byun, B. H., Kim, B. I., Choi, C. W. and Lim, S. M. (2016) Prognostic value of SUVmax measured by pretreatment Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in patients with ewing sarcoma. PLoS ONE 11, e0153281. https://doi.org/10.1371/journal.pone.0153281
  39. Jang, C., Oh, S. F., Wada, S., Rowe, G. C., Liu, L., Chan, M. C., Rhee, J., Hoshino, A., Kim, B., Ibrahim, A., Baca, L. G., Kim, E., Ghosh, C. C., Parikh, S. M., Jiang, A., Chu, Q., Forman, D. E., Lecker, S. H., Krishnaiah, S., Rabinowitz, J. D., Weljie, A. M., Baur, J. A., Kasper, D. L. and Arany, Z. (2016) A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat. Med. 22, 421-426. https://doi.org/10.1038/nm.4057
  40. Kang, W. J., Song, E. H., Park, J. Y., Park, Y. J., Cho, A. and Song, H. T. (2015) (18)F-fluoride PET imaging in a nude rat model of bone metastasis from breast cancer: comparison with (18)F-FDG and bioluminescence imaging. Nucl. Med. Biol. 42, 728-733. https://doi.org/10.1016/j.nucmedbio.2015.05.003
  41. Kao, C. Y., Hoffman, E. A., Beck, K. C., Bellamkonda, R. V. and Annapragada, A. V. (2003) Long-residence-time nano-scale liposomal iohexol for X-ray-based blood pool imaging. Acad. Radiol. 10, 475-483. https://doi.org/10.1016/S1076-6332(03)80055-7
  42. Karathanasis, E., Chan, L., Karumbaiah, L., McNeeley, K., D'Orsi, C. J., Annapragada, A. V., Sechopoulos, I. and Bellamkonda, R. V. (2009) Tumor vascular permeability to a nanoprobe correlates to tumor-specific expression levels of angiogenic markers. PLoS ONE 4, e5843. https://doi.org/10.1371/journal.pone.0005843
  43. Keshari, K. R., Sriram, R., Van Criekinge, M., Wilson, D. M., Wang, Z. J., Vigneron, D. B., Peehl, D. M. and Kurhanewicz, J. (2013) Metabolic reprogramming and validation of hyperpolarized 13C lactate as a prostate cancer biomarker using a human prostate tissue slice culture bioreactor. Prostate 73, 1171-1181. https://doi.org/10.1002/pros.22665
  44. Keshari, K. R. and Wilson, D. M. (2014) Chemistry and biochemistry of 13C hyperpolarized magnetic resonance using dynamic nuclear polarization. Chem. Soc. Rev. 43, 1627-1659. https://doi.org/10.1039/C3CS60124B
  45. Kim, J. B., Urban, K., Cochran, E., Lee, S., Ang, A., Rice, B., Bata, A., Campbell, K., Coffee, R., Gorodinsky, A., Lu, Z., Zhou, H., Kishimoto, T. K. and Lassota, P. (2010) Non-invasive detection of a small number of bioluminescent cancer cells in vivo. PLoS ONE 5, e9364. https://doi.org/10.1371/journal.pone.0009364
  46. Kim, S., Chung, J. K., Im, S. H., Jeong, J. M., Lee, D. S., Kim, D. G., Jung, H. W. and Lee, M. C. (2005) 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur. J. Nucl. Med. Mol. Imaging 32, 52-59. https://doi.org/10.1007/s00259-004-1598-6
  47. Kimmich, G. A., Randles, J. and Brand, J. S. (1975) Assay of picomole amounts of ATP, ADP, and AMP using the luciferase enzyme system. Anal. Biochem. 69, 187-206. https://doi.org/10.1016/0003-2697(75)90580-1
  48. Koppenol, W. H., Bounds, P. L. and Dang, C. V. (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325-337. https://doi.org/10.1038/nrc3038
  49. Kubo, T., Ohno, Y., Takenaka, D., Nishino, M., Gautam, S., Sugimura, K., Kauczor, H. U., Hatabu, H. and iLEAD study group (2016) Standard-dose vs. low-dose CT protocols in the evaluation of localized lung lesions: capability for lesion characterization-iLEAD study. Eur. J. Radiol. Open 3, 67-73. https://doi.org/10.1016/j.ejro.2016.03.002
  50. Kurhanewicz, J. and Vigneron, D. B. (2008) Advances in MR spectroscopy of the prostate. Magn. Reson. Imaging Clin. N. Am. 16, 697-710, ix-x.
  51. Laing, R. E., Walter, M. A., Campbell, D. O., Herschman, H. R., Satyamurthy, N., Phelps, M. E., Czernin, J., Witte, O. N. and Radu, C. G. (2009) Noninvasive prediction of tumor responses to gemcitabine using positron emission tomography. Proc. Natl. Acad. Sci. U.S.A. 106, 2847-2852. https://doi.org/10.1073/pnas.0812890106
  52. Landau, M. J., Gould, D. J. and Patel, K. M. (2016) Advances in fluorescent- image guided surgery. Ann. Transl. Med. 4, 392. https://doi.org/10.21037/atm.2016.10.70
  53. Lazari, M., Quinn, K. M., Claggett, S. B., Collins, J., Shah, G. J., Herman, H. E., Maraglia, B., Phelps, M. E., Moore, M. D. and van Dam, R. M. (2013) ELIXYS - a fully automated, three-reactor high-pressure radiosynthesizer for development and routine production of diverse PET tracers. EJNMMI Res. 3, 52. https://doi.org/10.1186/2191-219X-3-52
  54. Le, T. M., Poddar, S., Capri, J. R., Abt, E. R., Kim, W., Wei, L., Uong, N. T., Cheng, C. M., Braas, D., Nikanjam, M., Rix, P., Merkurjev, D., Zaretsky, J., Kornblum, H. I., Ribas, A., Herschman, H. R., Whitelegge, J., Faull, K. F., Donahue, T. R., Czernin, J. and Radu, C. G. (2017) ATR inhibition facilitates targeting of leukemia dependence on convergent nucleotide biosynthetic pathways. Nat. Commun. 8, 241. https://doi.org/10.1038/s41467-017-00221-3
  55. Lee, J. T., Campbell, D. O., Satyamurthy, N., Czernin, J. and Radu, C. G. (2012) Stratification of nucleoside analog chemotherapy using 1-(2'-deoxy-2'-18F-fluoro-beta-D-arabinofuranosyl)cytosine and 1-(2'-deoxy-2'-18F-fluoro-beta-L-arabinofuranosyl)-5-methylcytosine PET. J. Nucl. Med. 53, 275-280. https://doi.org/10.2967/jnumed.111.090407
  56. Lieberman, B. P., Ploessl, K., Wang, L., Qu, W., Zha, Z., Wise, D. R., Chodosh, L. A., Belka, G., Thompson, C. B. and Kung, H. F. (2011) PET imaging of glutaminolysis in tumors by 18F-(2S,4R)4-fluoroglutamine. J. Nucl. Med. 52, 1947-1955. https://doi.org/10.2967/jnumed.111.093815
  57. Logan, A., Pell, V. R., Shaffer, K. J., Evans, C., Stanley, N. J., Robb, E. L., Prime, T. A., Chouchani, E. T., Cocheme, H. M., Fearnley, I. M., Vidoni, S., James, A. M., Porteous, C. M., Partridge, L., Krieg, T., Smith, R. A. and Murphy, M. P. (2016) Assessing the mitochondrial membrane potential in cells and in vivo using targeted click chemistry and mass spectrometry. Cell Metab. 23, 379-385. https://doi.org/10.1016/j.cmet.2015.11.014
  58. Lynes, M. D., Leiria, L. O., Lundh, M., Bartelt, A., Shamsi, F., Huang, T. L., Takahashi, H., Hirshman, M. F., Schlein, C., Lee, A., Baer, L. A., May, F. J., Gao, F., Narain, N. R., Chen, E. Y., Kiebish, M. A., Cypess, A. M., Bluher, M., Goodyear, L. J., Hotamisligil, G. S., Stanford, K. I. and Tseng, Y. H. (2017) The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat. Med. 23, 631-637. https://doi.org/10.1038/nm.4297
  59. Malone, C. F., Fromm, J. A., Maertens, O., DeRaedt, T., Ingraham, R. and Cichowski, K. (2014) Defining key signaling nodes and therapeutic biomarkers in NF1-mutant cancers. Cancer Discov. 4, 1062-1073. https://doi.org/10.1158/2159-8290.CD-14-0159
  60. Mashimo, T., Pichumani, K., Vemireddy, V., Hatanpaa, K. J., Singh, D. K., Sirasanagandla, S., Nannepaga, S., Piccirillo, S. G., Kovacs, Z., Foong, C., Huang, Z., Barnett, S., Mickey, B. E., DeBerardinis, R. J., Tu, B. P., Maher, E. A. and Bachoo, R. M. (2014) Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159, 1603-1614. https://doi.org/10.1016/j.cell.2014.11.025
  61. Mayer, I. A., Abramson, V. G., Isakoff, S. J., Forero, A., Balko, J. M., Kuba, M. G., Sanders, M. E., Yap, J. T., Van den Abbeele, A. D., Li, Y., Cantley, L. C., Winer, E. and Arteaga, C. L. (2014) Stand up to cancer phase Ib study of pan-phosphoinositide-3-kinase inhibitor buparlisib with letrozole in estrogen receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol. 32, 1202-1209. https://doi.org/10.1200/JCO.2013.54.0518
  62. Mayers, J. R., Torrence, M. E., Danai, L. V., Papagiannakopoulos, T., Davidson, S. M., Bauer, M. R., Lau, A. N., Ji, B. W., Dixit, P. D., Hosios, A. M., Muir, A., Chin, C. R., Freinkman, E., Jacks, T., Wolpin, B. M., Vitkup, D. and Vander Heiden, M. G. (2016) Tissue of origin dictates branched-chain amino acid metabolism in mutant Krasdriven cancers. Science 353, 1161-1165. https://doi.org/10.1126/science.aaf5171
  63. Minn, H., Lapela, M., Klemi, P. J., Grenman, R., Leskinen, S., Lindholm, P., Bergman, J., Eronen, E., Haaparanta, M. and Joensuu, H. (1997) Prediction of survival with fluorine-18-fluoro-deoxyglucose and PET in head and neck cancer. J. Nucl. Med. 38, 1907-1911.
  64. Momcilovic, M., Bailey, S. T., Lee, J. T., Fishbein, M. C., Magyar, C., Braas, D., Graeber, T., Jackson, N. J., Czernin, J., Emberley, E., Gross, M., Janes, J., Mackinnon, A., Pan, A., Rodriguez, M., Works, M., Zhang, W., Parlati, F., Demo, S., Garon, E., Krysan, K., Walser, T. C., Dubinett, S. M., Sadeghi, S., Christofk, H. R. and Shackelford, D. B. (2017) Targeted inhibition of EGFR and glutaminase induces metabolic crisis in EGFR mutant lung cancer. Cell Rep. 18, 601-610. https://doi.org/10.1016/j.celrep.2016.12.061
  65. Momcilovic, M., McMickle, R., Abt, E., Seki, A., Simko, S. A., Magyar, C., Stout, D. B., Fishbein, M. C., Walser, T. C., Dubinett, S. M. and Shackelford, D. B. (2015) Heightening energetic stress selectively targets LKB1-deficient non-small cell lung cancers. Cancer Res. 75, 4910-4922. https://doi.org/10.1158/0008-5472.CAN-15-0797
  66. Mondal, S. B., Gao, S., Zhu, N., Liang, R., Gruev, V. and Achilefu, S. (2014) Real-time fluorescence image-guided oncologic surgery. Adv. Cancer Res. 124, 171-211.
  67. Morais, R., Zinkewich-Peotti, K., Parent, M., Wang, H., Babai, F. and Zollinger, M. (1994) Tumor-forming ability in athymic nude mice of human cell lines devoid of mitochondrial DNA. Cancer Res. 54, 3889-3896.
  68. Morciano, G., Sarti, A. C., Marchi, S., Missiroli, S., Falzoni, S., Raffaghello, L., Pistoia, V., Giorgi, C., Di Virgilio, F. and Pinton, P. (2017) Use of luciferase probes to measure ATP in living cells and animals. Nat. Protoc. 12, 1542-1562. https://doi.org/10.1038/nprot.2017.052
  69. Mountford, C., Ramadan, S., Stanwell, P. and Malycha, P. (2009) Proton MRS of the breast in the clinical setting. NMR Biomed. 22, 54-64. https://doi.org/10.1002/nbm.1301
  70. Mukundan, S., Jr., Ghaghada, K. B., Badea, C. T., Kao, C. Y., Hedlund, L. W., Provenzale, J. M., Johnson, G. A., Chen, E., Bellamkonda, R. V. and Annapragada, A. (2006) A liposomal nanoscale contrast agent for preclinical CT in mice. AJR Am. J. Roentgenol. 186, 300-307. https://doi.org/10.2214/AJR.05.0523
  71. National Lung Screening Trial Research Team, Aberle, D. R., Adams, A. M., Berg, C. D., Black, W. C., Clapp, J. D., Fagerstrom, R. M., Gareen, I. F., Gatsonis, C., Marcus, P. M. and Sicks, J. D. (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365, 395-409. https://doi.org/10.1056/NEJMoa1102873
  72. National Lung Screening Trial Research Team, Church, T. R., Black, W. C., Aberle, D. R., Berg, C. D., Clingan, K. L., Duan, F., Fagerstrom, R. M., Gareen, I. F., Gierada, D. S., Jones, G. C., Mahon, I., Marcus, P. M., Sicks, J. D., Jain, A. and Baum, S. (2013) Results of initial low-dose computed tomographic screening for lung cancer. N. Engl. J. Med. 368, 1980-1991. https://doi.org/10.1056/NEJMoa1209120
  73. Nelson, S. J., Graves, E., Pirzkall, A., Li, X., Antiniw Chan, A., Vigneron, D. B. and McKnight, T. R. (2002) In vivo molecular imaging for planning radiation therapy of gliomas: an application of 1H MRSI. J. Magn. Reson. Imaging 16, 464-476. https://doi.org/10.1002/jmri.10183
  74. Nelson, S. J., Kurhanewicz, J., Vigneron, D. B., Larson, P. E., Harzstark, A. L., Ferrone, M., van Criekinge, M., Chang, J. W., Bok, R., Park, I., Reed, G., Carvajal, L., Small, E. J., Munster, P., Weinberg, V. K., Ardenkjaer-Larsen, J. H., Chen, A. P., Hurd, R. E., Odegardstuen, L. I., Robb, F. J., Tropp, J. and Murray, J. A. (2013) Metabolic imaging of patients with prostate cancer using hyperpolarized [1-(1)(3)C]pyruvate. Sci. Transl. Med. 5, 198ra108.
  75. Nielsen, J. (2017) Systems biology of metabolism: a driver for developing personalized and precision medicine. Cell Metab. 25, 572-579. https://doi.org/10.1016/j.cmet.2017.02.002
  76. Oshida, M., Uno, K., Suzuki, M., Nagashima, T., Hashimoto, H., Yagata, H., Shishikura, T., Imazeki, K. and Nakajima, N. (1998) Predicting the prognoses of breast carcinoma patients with positron emission tomography using 2-deoxy-2-fluoro[18F]-D-glucose. Cancer 82, 2227-2234.
  77. Park, H. M., Russo, K. A., Karateev, G., Park, M., Dubikovskaya, E., Kriegsfeld, L. J. and Stahl, A. (2017) A system for in vivo imaging of hepatic free fatty acid uptake. Gastroenterology 152, 78-81.e72.
  78. Park, I., Bok, R., Ozawa, T., Phillips, J. J., James, C. D., Vigneron, D. B., Ronen, S. M. and Nelson, S. J. (2011) Detection of early response to temozolomide treatment in brain tumors using hyperpolarized 13C MR metabolic imaging. J. Magn. Reson. Imaging 33, 1284-1290. https://doi.org/10.1002/jmri.22563
  79. Pirotte, B., Goldman, S., Massager, N., David, P., Wikler, D., Vandesteene, A., Salmon, I., Brotchi, J. and Levivier, M. (2004) Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J. Nucl. Med. 45, 1293-1298.
  80. Ploessl, K., Wang, L., Lieberman, B. P., Qu, W. and Kung, H. F. (2012) Comparative evaluation of 18F-labeled glutamic acid and glutamine as tumor metabolic imaging agents. J. Nucl. Med. 53, 1616-1624.
  81. Qu, W., Oya, S., Lieberman, B. P., Ploessl, K., Wang, L., Wise, D. R., Divgi, C. R., Chodosh, L. A., Thompson, C. B. and Kung, H. F. (2012) Preparation and characterization of L-[5-11C]-glutamine for metabolic imaging of tumors. J. Nucl. Med. 53, 98-105. https://doi.org/10.2967/jnumed.111.093831
  82. Qu, W., Zha, Z., Lieberman, B. P., Mancuso, A., Stetz, M., Rizzi, R., Ploessl, K., Wise, D., Thompson, C. and Kung, H. F. (2011) Facile synthesis [5-(13)C-4-(2)H(2)]-L-glutamine for hyperpolarized MRS imaging of cancer cell metabolism. Acad. Radiol. 18, 932-939. https://doi.org/10.1016/j.acra.2011.05.002
  83. Rabinovich, B. A., Ye, Y., Etto, T., Chen, J. Q., Levitsky, H. I., Overwijk, W. W., Cooper, L. J., Gelovani, J. and Hwu, P. (2008) Visualizing fewer than 10 mouse T cells with an enhanced firefly luciferase in immunocompetent mouse models of cancer. Proc. Natl. Acad. Sci. U.S.A. 105, 14342-14346. https://doi.org/10.1073/pnas.0804105105
  84. Racker, E. (1972) Bioenergetics and the problem of tumor growth. Am. Sci. 60, 56-63.
  85. Radu, C. G., Shu, C. J., Nair-Gill, E., Shelly, S. M., Barrio, J. R., Satyamurthy, N., Phelps, M. E. and Witte, O. N. (2008) Molecular imaging of lymphoid organs and immune activation by positron emission tomography with a new [18F]-labeled 2'-deoxycytidine analog. Nat. Med. 14, 783-788. https://doi.org/10.1038/nm1724
  86. Rajeshkumar, N. V., Dutta, P., Yabuuchi, S., de Wilde, R. F., Martinez, G. V., Le, A., Kamphorst, J. J., Rabinowitz, J. D., Jain, S. K., Hidalgo, M., Dang, C. V., Gillies, R. J. and Maitra, A. (2015) Therapeutic targeting of the warburg effect in pancreatic cancer relies on an absence of p53 function. Cancer Res. 75, 3355-3364. https://doi.org/10.1158/0008-5472.CAN-15-0108
  87. Rampinelli, C., Origgi, D. and Bellomi, M. (2013) Low-dose CT: technique, reading methods and image interpretation. Cancer Imaging 12, 548-556.
  88. Rodrigues, T. B., Serrao, E. M., Kennedy, B. W., Hu, D. E., Kettunen, M. I. and Brindle, K. M. (2014) Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose. Nat. Med. 20, 93-97. https://doi.org/10.1038/nm.3416
  89. Safran, M., Kim, W. Y., Kung, A. L., Horner, J. W., DePinho, R. A. and Kaelin, W. G., Jr. (2003) Mouse reporter strain for noninvasive bioluminescent imaging of cells that have undergone Cre-mediated recombination. Mol. Imaging 2, 297-302. https://doi.org/10.1162/153535003322750637
  90. Salamanca-Cardona, L., Keshari, K. R. (2015) (13)C-labeled biochemical probes for the study of cancer metabolism with dynamic nuclear polarization-enhanced magnetic resonance imaging. Cancer Metab. 3, 9. https://doi.org/10.1186/s40170-015-0136-2
  91. Scabini, M., Stellari, F., Cappella, P., Rizzitano, S., Texido, G. and Pesenti, E. (2011) In vivo imaging of early stage apoptosis by measuring real-time caspase-3/7 activation. Apoptosis 16, 198-207. https://doi.org/10.1007/s10495-010-0553-1
  92. Schulte, M. L., Hight, M. R., Ayers, G. D., Liu, Q., Shyr, Y., Washington, M. K. and Manning, H. C. (2017) Non-invasive glutamine PET Reflects Pharmacological Inhibition of BRAFV600E in vivo. Mol. Imaging Biol. 19, 421-428. https://doi.org/10.1007/s11307-016-1008-z
  93. Serrao, E. M., Kettunen, M. I., Rodrigues, T. B., Dzien, P., Wright, A. J., Gopinathan, A., Gallagher, F. A., Lewis, D. Y., Frese, K. K., Almeida, J., Howat, W. J., Tuveson, D. A. and Brindle, K. M. (2016) MRI with hyperpolarised [1-13C]pyruvate detects advanced pancreatic preneoplasia prior to invasive disease in a mouse model. Gut 65, 465-475. https://doi.org/10.1136/gutjnl-2015-310114
  94. Shackelford, D. B., Abt, E., Gerken, L., Vasquez, D. S., Seki, A., Leblanc, M., Wei, L., Fishbein, M. C., Czernin, J., Mischel, P. S. and Shaw, R. J. (2013) LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 23, 143-158. https://doi.org/10.1016/j.ccr.2012.12.008
  95. Shi, D., Cai, G., Peng, J., Li, D., Li, X., Xu, Y. and Cai, S. (2015) The preoperative SUVmax for (18)F-FDG uptake predicts survival in patients with colorectal cancer. BMC Cancer 15, 991.
  96. Shin, P. J., Zhu, Z., Camarda, R., Bok, R. A., Zhou, A. Y., Kurhanewicz, J., Goga, A. and Vigneron, D. B. (2017) Cancer recurrence monitoring using hyperpolarized [1-13C]pyruvate metabolic imaging in murine breast cancer model. Magn. Reson. Imaging 43, 105-109. https://doi.org/10.1016/j.mri.2017.07.014
  97. Shiomi, S., Nishiguchi, S., Ishizu, H., Iwata, Y., Sasaki, N., Tamori, A., Habu, D., Takeda, T., Kubo, S. and Ochi, H. (2001) Usefulness of positron emission tomography with fluorine-18-fluorodeoxyglucose for predicting outcome in patients with hepatocellular carcinoma. Am. J. Gastroenterol. 96, 1877-1880. https://doi.org/10.1111/j.1572-0241.2001.03888.x
  98. Stollfuss, J., Landvogt, N., Abenstein, M., Ziegler, S., Schwaiger, M., Senekowitsch-Schmidtke, R. and Wieder, H. (2015) Non-invasive imaging of implanted peritoneal carcinomatosis in mice using PET and bioluminescence imaging. EJNMMI Res. 5, 125.
  99. Testa, C., Pultrone, C., Manners, D. N., Schiavina, R. and Lodi, R. (2016) Metabolic imaging in prostate cancer: where we are. Front. Oncol. 6, 225.
  100. Timm, K. N., Hartl, J., Keller, M. A., Hu, D. E., Kettunen, M. I., Rodrigues, T. B., Ralser, M. and Brindle, K. M. (2015) Hyperpolarized [U-(2) H, U-(13) C]Glucose reports on glycolytic and pentose phosphate pathway activity in EL4 tumors and glycolytic activity in yeast cells. Magn. Reson. Med. 74, 1543-1547. https://doi.org/10.1002/mrm.25561
  101. Tseng, J. C., Narayanan, N., Ho, G., Groves, K., Delaney, J., Bao, B., Zhang, J., Morin, J., Kossodo, S., Rajopadhye, M. and Peterson, J. D. (2017) Fluorescence imaging of bombesin and transferrin receptor expression is comparable to 18F-FDG PET in early detection of sorafenib-induced changes in tumor metabolism. PLoS ONE 12, e0182689. https://doi.org/10.1371/journal.pone.0182689
  102. Vahrmeijer, A. L., Hutteman, M., van der Vorst, J. R., van de Velde, C. J. and Frangioni, J. V. (2013) Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 10, 507-518. https://doi.org/10.1038/nrclinonc.2013.123
  103. Van de Bittner, G. C., Dubikovskaya, E. A., Bertozzi, C. R. and Chang, C. J. (2010) In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter. Proc. Natl. Acad. Sci. U.S.A. 107, 21316-21321. https://doi.org/10.1073/pnas.1012864107
  104. Van Laere, K., Ceyssens, S., Van Calenbergh, F., de Groot, T., Menten, J., Flamen, P., Bormans, G. and Mortelmans, L. (2005) Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur. J. Nucl. Med. Mol. Imaging 32, 39-51. https://doi.org/10.1007/s00259-004-1564-3
  105. van Oosten, M., Schafer, T., Gazendam, J. A., Ohlsen, K., Tsompanidou, E., de Goffau, M. C., Harmsen, H. J., Crane, L. M., Lim, E., Francis, K. P., Cheung, L., Olive, M., Ntziachristos, V., van Dijl, J. M. and van Dam, G. M. (2013) Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin. Nat. Commun. 4, 2584. https://doi.org/10.1038/ncomms3584
  106. Vander Heiden, M. G. and DeBerardinis, R. J. (2017) Understanding the intersections between metabolism and cancer biology. Cell 168, 657-669. https://doi.org/10.1016/j.cell.2016.12.039
  107. Vavere, A. L., Kridel, S. J., Wheeler, F. B. and Lewis, J. S. (2008) 1-11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer. J. Nucl. Med. 49, 327-334.
  108. Venneti, S., Dunphy, M. P., Zhang, H., Pitter, K. L., Zanzonico, P., Campos, C., Carlin, S. D., La Rocca, G., Lyashchenko, S., Ploessl, K., Rohle, D., Omuro, A. M., Cross, J. R., Brennan, C. W., Weber, W. A., Holland, E. C., Mellinghoff, I. K., Kung, H. F., Lewis, J. S. and Thompson, C. B. (2015) Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci. Transl. Med. 7, 274ra217.
  109. Viale, A., Pettazzoni, P., Lyssiotis, C. A., Ying, H., Sanchez, N., Marchesini, M., Carugo, A., Green, T., Seth, S., Giuliani, V., Kost-Alimova, M., Muller, F., Colla, S., Nezi, L., Genovese, G., Deem, A. K., Kapoor, A., Yao, W., Brunetto, E., Kang, Y., Yuan, M., Asara, J. M., Wang, Y. A., Heffernan, T. P., Kimmelman, A. C., Wang, H., Fleming, J. B., Cantley, L. C., DePinho, R. A. and Draetta, G. F. (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514, 628-632. https://doi.org/10.1038/nature13611
  110. Warburg, O. (1956a) On respiratory impairment in cancer cells. Science 124, 269-270.
  111. Warburg, O. (1956b) On the origin of cancer cells. Science 123, 309-314. https://doi.org/10.1126/science.123.3191.309
  112. Warburg, O., Wind, F. and Negelein, E. (1927) The metabolism of tumors in the body. J. Gen. Physiol. 8, 519-530.
  113. Wehrman, T. S., von Degenfeld, G., Krutzik, P. O., Nolan, G. P. and Blau, H. M. (2006) Luminescent imaging of beta-galactosidase activity in living subjects using sequential reporter-enzyme luminescence. Nat. Methods 3, 295-301. https://doi.org/10.1038/nmeth868
  114. Weinberg, F., Hamanaka, R., Wheaton, W. W., Weinberg, S., Joseph, J., Lopez, M., Kalyanaraman, B., Mutlu, G. M., Budinger, G. R. and Chandel, N. S. (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. U.S.A. 107, 8788-8793. https://doi.org/10.1073/pnas.1003428107
  115. Weinhouse, S. (1956) On respiratory impairment in cancer cells. Science 124, 267-269.
  116. Weinhouse, S., Millington, R. H. and Wenner, C. E. (1951) Metabolism of neoplastic tissue. I. The oxidation of carbohydrate and fatty acids in transplanted tumors. Cancer Res. 11, 845-850.
  117. Wenner, C. E., Spirtes, M. A. and Weinhouse, S. (1952) Metabolism of neoplastic tissue. II. A survey of enzymes of the citric acid cycle in transplanted tumors. Cancer Res. 12, 44-49.
  118. Wibmer, A. G., Burger, I. A., Sala, E., Hricak, H., Weber, W. A. and Vargas, H. A. (2016) Molecular imaging of prostate cancer. Radiographics 36, 142-159. https://doi.org/10.1148/rg.2016150059
  119. Witney, T. H., James, M. L., Shen, B., Chang, E., Pohling, C., Arksey, N., Hoehne, A., Shuhendler, A., Park, J. H., Bodapati, D., Weber, J., Gowrishankar, G., Rao, J., Chin, F. T. and Gambhir, S. S. (2015) PET imaging of tumor glycolysis downstream of hexokinase through noninvasive measurement of pyruvate kinase M2. Sci. Transl. Med. 7, 310ra169. https://doi.org/10.1126/scitranslmed.aac6117
  120. Woolfenden, S., Zhu, H. and Charest, A. (2009) A Cre/LoxP conditional luciferase reporter transgenic mouse for bioluminescence monitoring of tumorigenesis. Genesis 47, 659-666. https://doi.org/10.1002/dvg.20545
  121. Wu, Z., Zha, Z., Li, G., Lieberman, B. P., Choi, S. R., Ploessl, K. and Kung, H. F. (2014) [(18)F](2S,4S)-4-(3-Fluoropropyl)glutamine as a tumor imaging agent. Mol. Pharm. 11, 3852-3866. https://doi.org/10.1021/mp500236y
  122. Yankeelov, T. E. and Gore, J. C. (2009) Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples. Curr. Med. Imaging Rev. 3, 91-107.
  123. Yao, H., So, M. K. and Rao, J. (2007) A bioluminogenic substrate for in vivo imaging of beta-lactamase activity. Angew. Chem. Int. Ed. Engl. 46, 7031-7034.
  124. Ying, H., Kimmelman, A. C., Lyssiotis, C. A., Hua, S., Chu, G. C., Fletcher-Sananikone, E., Locasale, J. W., Son, J., Zhang, H., Coloff, J. L., Yan, H., Wang, W., Chen, S., Viale, A., Zheng, H., Paik, J. H., Lim, C., Guimaraes, A. R., Martin, E. S., Chang, J., Hezel, A. F., Perry, S. R., Hu, J., Gan, B., Xiao, Y., Asara, J. M., Weissleder, R., Wang, Y. A., Chin, L., Cantley, L. C. and DePinho, R. A. (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656-670. https://doi.org/10.1016/j.cell.2012.01.058
  125. Yoshimoto, M., Waki, A., Yonekura, Y., Sadato, N., Murata, T., Omata, N., Takahashi, N., Welch, M. J. and Fujibayashi, Y. (2001) Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl. Med. Biol. 28, 117-122. https://doi.org/10.1016/S0969-8051(00)00195-5
  126. Zhang, X., Bloch, S., Akers, W. and Achilefu, S. (2012) Near-infrared molecular probes for in vivo imaging. Curr. Protoc. Cytom. Chapter 12, Unit12.27.
  127. Zhou, H., Luby-Phelps, K., Mickey, B. E., Habib, A. A., Mason, R. P. and Zhao, D. (2009) Dynamic near-infrared optical imaging of 2-deoxyglucose uptake by intracranial glioma of athymic mice. PLoS ONE 4, e8051. https://doi.org/10.1371/journal.pone.0008051
  128. Zhou, R., Pantel, A. R., Li, S., Lieberman, B. P., Ploessl, K., Choi, H., Blankemeyer, E., Lee, H., Kung, H. F., Mach, R. H. and Mankoff, D. A. (2017) [18F](2S,4R)4-fluoroglutamine PET detects glutamine pool size changes in triple-negative breast cancer in response to glutaminase inhibition. Cancer Res. 77, 1476-1484. https://doi.org/10.1158/0008-5472.CAN-16-1945

Cited by

  1. Cancer Metabolism: a Hope for Curing Cancer vol.26, pp.1, 2018, https://doi.org/10.4062/biomolther.2017.300
  2. Application of in vivo MR methods in the study of breast cancer metabolism pp.09523480, 2018, https://doi.org/10.1002/nbm.4032
  3. The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part II) pp.1179-2000, 2019, https://doi.org/10.1007/s40291-018-0367-3
  4. Can Metabolic Pathways Be Therapeutic Targets in Rheumatoid Arthritis? vol.8, pp.5, 2018, https://doi.org/10.3390/jcm8050753
  5. The PI3K inhibitor buparlisib suppresses osteoclast formation and tumour cell growth in bone metastasis of lung cancer, as evidenced by multimodality molecular imaging vol.41, pp.5, 2018, https://doi.org/10.3892/or.2019.7080
  6. Bioluminescent-based imaging and quantification of glucose uptake in vivo vol.16, pp.6, 2018, https://doi.org/10.1038/s41592-019-0421-z
  7. Inhibition of cancer metabolism: a patent landscape vol.8, pp.4, 2018, https://doi.org/10.4155/ppa-2019-0012
  8. The applications of big data in molecular diagnostics vol.19, pp.10, 2018, https://doi.org/10.1080/14737159.2019.1657834
  9. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy vol.100, pp.1, 2018, https://doi.org/10.1152/physrev.00018.2019
  10. Detection and Independent Validation of Model-Based Quantitative Transcriptional Regulation Relationships Altered in Lung Cancers vol.8, pp.None, 2020, https://doi.org/10.3389/fbioe.2020.00582
  11. Development of a deep-red fluorescent glucose-conjugated bioprobe for in vivo tumor targeting vol.56, pp.7, 2018, https://doi.org/10.1039/c9cc07363a
  12. Flavonoids against the Warburg phenotype—concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism vol.11, pp.3, 2018, https://doi.org/10.1007/s13167-020-00217-y
  13. Fluorescent conjugates of D-glucosamine with 3-thiazolylcoumarins: synthesis, characterization and potential use as cell imaging agents vol.36, pp.5, 2018, https://doi.org/10.7124/bc.000a39
  14. Prognostic Value of SLC16A3(MCT4) in Lung Adenocarcinoma and Its Clinical Significance vol.14, pp.None, 2018, https://doi.org/10.2147/ijgm.s337615
  15. Biomarkers in Pancreatic Cancer as Analytic Targets for Nanomediated Imaging and Therapy vol.14, pp.11, 2018, https://doi.org/10.3390/ma14113083
  16. Current Trends in Non-Invasive Imaging of Interactions in the Liver Tumor Microenvironment Mediated by Tumor Metabolism vol.13, pp.15, 2021, https://doi.org/10.3390/cancers13153645