References
- Acquaviva, J., Smith, D. L., Sang, J., Friedland, J. C., He, S., Sequeira, M., Zhang, C., Wada, Y. and Proia, D. A. (2012) Targeting KRASmutant non-small cell lung cancer with the Hsp90 inhibitor ganetespib. Mol. Cancer Ther. 11, 2633-2643. https://doi.org/10.1158/1535-7163.MCT-12-0615
- Agrawal, N. R., Bukowski, R. M., Rybicki, L. A., Kurtzberg, J., Cohen, L. J. and Hussein, M. A. (2003) A phase I-II trial of polyethylene glycol-conjugated L-asparaginase in patients with multiple myeloma. Cancer 98, 94-99. https://doi.org/10.1002/cncr.11480
- Al-Saffar, N. M., Troy, H., Ramirez de Molina, A., Jackson, L. E., Madhu, B., Griffiths, J. R., Leach, M. O., Workman, P., Lacal, J. C., Judson, I. R. and Chung, Y. L. (2006) Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of the choline kinase inhibitor MN58b in human carcinoma models. Cancer Res. 66, 427-434. https://doi.org/10.1158/0008-5472.CAN-05-1338
- Bar-Peled, L. and Sabatini, D. M. (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol. 24, 400-406. https://doi.org/10.1016/j.tcb.2014.03.003
- Baracca, A., Chiaradonna, F., Sgarbi, G., Solaini, G., Alberghina, L. and Lenaz, G. (2010) Mitochondrial Complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells. Biochim. Biophys. Acta 1797, 314-323. https://doi.org/10.1016/j.bbabio.2009.11.006
- Beckers, A., Organe, S., Timmermans, L., Scheys, K., Peeters, A., Brusselmans, K., Verhoeven, G. and Swinnen, J. V. (2007) Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res. 67, 8180-8187. https://doi.org/10.1158/0008-5472.CAN-07-0389
- Benjamin, D., Colombi, M., Moroni, C. and Hall, M. N. (2011) Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat. Rev. Drug Discov. 10, 868-880. https://doi.org/10.1038/nrd3531
- Bensaad, K. and Harris, A. L. (2013) Cancer metabolism as a therapeutic target: metabolic synthetic lethality. Oncology (Williston Park, N.Y.) 27, 467, 473-474.
- Brunelli, L., Caiola, E., Marabese, M., Broggini, M. and Pastorelli, R. (2014) Capturing the metabolomic diversity of KRAS mutants in non-small-cell lung cancer cells. Oncotarget 5, 4722-4731.
- Brunelli, L., Caiola, E., Marabese, M., Broggini, M. and Pastorelli, R. (2016) Comparative metabolomics profiling of isogenic KRAS wild type and mutant NSCLC cells in vitro and in vivo. Sci. Rep. 6, 28398. https://doi.org/10.1038/srep28398
- Cancer Genome Atlas Research Network (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543-550. https://doi.org/10.1038/nature13385
- Carracedo, A., Cantley, L. C. and Pandolfi, P. P. (2013) Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer 13, 227-232. https://doi.org/10.1038/nrc3483
- Carretero, J., Medina, P. P., Blanco, R., Smit, L., Tang, M., Roncador, G., Maestre, L., Conde, E., Lopez-Rios, F., Clevers, H. C. and Sanchez-Cespedes, M. (2007) Dysfunctional AMPK activity, signalling through mTOR and survival in response to energetic stress in LKB1-deficient lung cancer. Oncogene 26, 1616-1625. https://doi.org/10.1038/sj.onc.1209951
- Chaudhri, V. K., Salzler, G. G., Dick, S. A., Buckman, M. S., Sordella, R., Karoly, E. D., Mohney, R., Stiles, B. M., Elemento, O., Altorki, N. K. and McGraw, T. E. (2013) Metabolic alterations in lung cancerassociated fibroblasts correlated with increased glycolytic metabolism of the tumor. Mol. Cancer Res. 11, 579-592. https://doi.org/10.1158/1541-7786.MCR-12-0437-T
- Chen, P.-H., Cai, L., Kim, H. S., Britt, R., Xiao, G., White, M. A., Minna, J. D. and DeBerardinis, R. J. (2014) Metabolic diversity in human non-small cell lung cancer. Cancer Metab. 2, P13. https://doi.org/10.1186/2049-3002-2-S1-P13
- Chiaradonna, F., Sacco, E., Manzoni, R., Giorgio, M., Vanoni, M. and Alberghina, L. (2006) Ras-dependent carbon metabolism and transformation in mouse fibroblasts. Oncogene 25, 5391-5404. https://doi.org/10.1038/sj.onc.1209528
- Choi, H., Paeng, J. C., Kim, D. W., Lee, J. K., Park, C. M., Kang, K. W., Chung, J. K. and Lee, D. S. (2013) Metabolic and metastatic characteristics of ALK-rearranged lung adenocarcinoma on FDG PET/CT. Lung Cancer 79, 242-247. https://doi.org/10.1016/j.lungcan.2012.11.021
- Clinical Lung Cancer Genome Project (CLCGP) and Network Genomic Medicine (NGM) (2013) A genomics-based classification of human lung tumors. Sci. Transl. Med. 5, 209ra153.
- Cloughesy, T. F., Yoshimoto, K., Nghiemphu, P., Brown, K., Dang, J., Zhu, S., Hsueh, T., Chen, Y., Wang, W., Youngkin, D., Liau, L., Martin, N., Becker, D., Bergsneider, M., Lai, A., Green, R., Oglesby, T., Koleto, M., Trent, J., Horvath, S., Mischel, P. S., Mellinghoff, I. K. and Sawyers, C. L. (2008) Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med. 5, e8. https://doi.org/10.1371/journal.pmed.0050008
- Cox, A. D. and Der, C. J. (2010) Ras history: The saga continues. Small GTPases 1, 2-27. https://doi.org/10.4161/sgtp.1.1.12178
- Dang, L., Jin, S. and Su, S. M. (2010) IDH mutations in glioma and acute myeloid leukemia. Trends Mol. Med. 16, 387-397. https://doi.org/10.1016/j.molmed.2010.07.002
- Davidson, S. M., Papagiannakopoulos, T., Olenchock, B. A., Heyman, J. E., Keibler, M. A., Luengo, A., Bauer, M. R., Jha, A. K., O'Brien, J. P., Pierce, K. A., Gui, D. Y., Sullivan, L. B., Wasylenko, T. M., Subbaraj, L., Chin, C. R., Stephanopolous, G., Mott, B. T., Jacks, T., Clish, C. B. and Vander Heiden, M. G. (2016) Environment Impacts the Metabolic Dependencies of Ras-Driven Non-Small Cell Lung Cancer. Cell Metab. 23, 517-528. https://doi.org/10.1016/j.cmet.2016.01.007
- Dearden, S., Stevens, J., Wu, Y. L. and Blowers, D. (2013) Mutation incidence and coincidence in non small-cell lung cancer: metaanalyses by ethnicity and histology (mutMap). Ann. Oncol. 24, 2371-2376.
- Dong, G., Mao, Q., Xia, W., Xu, Y., Wang, J., Xu, L. and Jiang, F. (2016) PKM2 and cancer: the function of PKM2 beyond glycolysis. Oncol. Lett. 11, 1980-1986. https://doi.org/10.3892/ol.2016.4168
- Edmunds, L. R., Sharma, L., Kang, A., Lu, J., Vockley, J., Basu, S., Uppala, R., Goetzman, E. S., Beck, M. E., Scott, D. and Prochownik, E. V. (2014) c-Myc programs fatty acid metabolism and dictates acetyl-CoA abundance and fate. J. Biol. Chem. 289, 25382-25392. https://doi.org/10.1074/jbc.M114.580662
- Eng, C. P., Sehgal, S. N. and Vezina, C. (1984) Activity of rapamycin (AY-22,989) against transplanted tumors. J. Antibiot. 37, 1231-1237. https://doi.org/10.7164/antibiotics.37.1231
- Fan, T. W., Lane, A. N., Higashi, R. M., Farag, M. A., Gao, H., Bousamra, M. and Miller, D. M. (2009) Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Mol. Cancer 8, 41. https://doi.org/10.1186/1476-4598-8-41
- Faubert, B., Li, K. Y., Cai, L., Hensley, C. T., Kim, J., Zacharias, L. G., Yang, C., Do, Q. N., Doucette, S., Burguete, D., Li, H., Huet, G., Yuan, Q., Wigal, T., Butt, Y., Ni, M., Torrealba, J., Oliver, D., Lenkinski, R. E., Malloy, C. R., Wachsmann, J. W., Young, J. D., Kernstine, K. and DeBerardinis, R. J. (2017) Lactate Metabolism in Human Lung Tumors. Cell 171, 358-371.e9. https://doi.org/10.1016/j.cell.2017.09.019
- Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., Gottfried, E., Schwarz, S., Rothe, G., Hoves, S., Renner, K., Timischl, B., Mackensen, A., Kunz-Schughart, L., Andreesen, R., Krause, S. W. and Kreutz, M. (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109, 3812-3819. https://doi.org/10.1182/blood-2006-07-035972
- Fu, C. H. and Sakamoto, K. M. (2007) PEG-asparaginase. Expert Opin. Pharmacother. 8, 1977-1984. https://doi.org/10.1517/14656566.8.12.1977
- Galluzzi, L., Kepp, O., Vander Heiden, M. G. and Kroemer, G. (2013) Metabolic targets for cancer therapy. Nat. Rev. Drug Discov. 12, 829-846. https://doi.org/10.1038/nrd4145
- Gao, P., Tchernyshyov, I., Chang, T. C., Lee, Y. S., Kita, K., Ochi, T., Zeller, K. I., De Marzo, A. M., Van Eyk, J. E., Mendell, J. T. and Dang, C. V. (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458, 762-765. https://doi.org/10.1038/nature07823
- Garassino, M. C., Marabese, M., Rusconi, P., Rulli, E., Martelli, O., Farina, G., Scanni, A. and Broggini, M. (2011) Different types of KRas mutations could affect drug sensitivity and tumour behaviour in non-small-cell lung cancer. Ann. Oncol. 22, 235-237. https://doi.org/10.1093/annonc/mdq680
- Gatenby, R. A. and Gillies, R. J. (2004) Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891-899. https://doi.org/10.1038/nrc1478
- Glazer, E. S., Piccirillo, M., Albino, V., Di Giacomo, R., Palaia, R., Mastro, A. A., Beneduce, G., Castello, G., De Rosa, V., Petrillo, A., Ascierto, P. A., Curley, S. A. and Izzo, F. (2010) Phase II study of pegylated arginine deiminase for nonresectable and metastatic hepatocellular carcinoma. J. Clin. Oncol. 28, 2220-2226.
- Go, M. K., Zhang, W. C., Lim, B. and Yew, W. S. (2014) Glycine decarboxylase is an unusual amino acid decarboxylase involved in tumorigenesis. Biochemistry 53, 947-956. https://doi.org/10.1021/bi4014227
- Gouw, A. M., Eberlin, L. S., Margulis, K., Sullivan, D. K., Toal, G. G., Tong, L., Zare, R. N. and Felsher, D. W. (2017) Oncogene KRAS activates fatty acid synthase, resulting in specific ERK and lipid signatures associated with lung adenocarcinoma. Proc. Natl. Acad. Sci. U.S.A. 114, 4300-4305. https://doi.org/10.1073/pnas.1617709114
- Gray, L. R., Tompkins, S. C. and Taylor, E. B. (2014) Regulation of pyruvate metabolism and human disease. Cell. Mol. Life Sci. 71, 2577-2604. https://doi.org/10.1007/s00018-013-1539-2
- Grewe, M., Gansauge, F., Schmid, R. M., Adler, G. and Seufferlein, T. (1999) Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Res. 59, 3581-3587.
- Gridelli, C., Rossi, A., Carbone, D. P., Guarize, J., Karachaliou, N., Mok, T., Petrella, F., Spaggiari, L. and Rosell, R. (2015) Non-smallcell lung cancer. Nat. Rev. Dis. Primers 1, 15009.
- Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
- Haq, R., Shoag, J., Andreu-Perez, P., Yokoyama, S., Edelman, H., Rowe, G. C., Frederick, D. T., Hurley, A. D., Nellore, A., Kung, A. L., Wargo, J. A., Song, J. S., Fisher, D. E., Arany, Z. and Widlund, H. R. (2013) Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 23, 302-315. https://doi.org/10.1016/j.ccr.2013.02.003
- Hassanein, M., Qian, J., Hoeksema, M. D., Wang, J., Jacobovitz, M., Ji, X., Harris, F. T., Harris, B. K., Boyd, K. L., Chen, H., Eisenberg, R. and Massion, P. P. (2015) Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer. Int. J. Cancer 137, 1587-1597. https://doi.org/10.1002/ijc.29535
- Hatzivassiliou, G., Zhao, F., Bauer, D. E., Andreadis, C., Shaw, A. N., Dhanak, D., Hingorani, S. R., Tuveson, D. A. and Thompson, C. B. (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311-321. https://doi.org/10.1016/j.ccr.2005.09.008
- Hensley, C. T., Faubert, B., Yuan, Q., Lev-Cohain, N., Jin, E., Kim, J., Jiang, L., Ko, B., Skelton, R., Loudat, L., Wodzak, M., Klimko, C., McMillan, E., Butt, Y., Ni, M., Oliver, D., Torrealba, J., Malloy, C. R., Kernstine, K., Lenkinski, R. E. and DeBerardinis, R. J. (2016) Metabolic heterogeneity in human lung tumors. Cell 164, 681-694. https://doi.org/10.1016/j.cell.2015.12.034
- Hobbs, G. A., Der, C. J. and Rossman, K. L. (2016) RAS isoforms and mutations in cancer at a glance. J. Cell Sci. 129, 1287-1292. https://doi.org/10.1242/jcs.182873
- Houchens, D. P., Ovejera, A. A., Riblet, S. M. and Slagel, D. E. (1983) Human brain tumor xenografts in nude mice as a chemotherapy model. Eur. J. Cancer Clin. Oncol. 19, 799-805. https://doi.org/10.1016/0277-5379(83)90012-3
- Hrustanovic, G., Olivas, V., Pazarentzos, E., Tulpule, A., Asthana, S., Blakely, C. M., Okimoto, R. A., Lin, L., Neel, D. S., Sabnis, A., Flanagan, J., Chan, E., Varella-Garcia, M., Aisner, D. L., Vaishnavi, A., Ou, S. H., Collisson, E. A., Ichihara, E., Mack, P. C., Lovly, C. M., Karachaliou, N., Rosell, R., Riess, J. W., Doebele, R. C. and Bivona, T. G. (2015) RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK-positive lung cancer. Nat. Med. 21, 1038-1047. https://doi.org/10.1038/nm.3930
- Huang, M., Chida, K., Kamata, N., Nose, K., Kato, M., Homma, Y., Takenawa, T. and Kuroki, T. (1988) Enhancement of inositol phospholipid metabolism and activation of protein kinase C in ras-transformed rat fibroblasts. J. Biol. Chem. 263, 17975-17980.
- Hunt, T. K., Aslam, R. S., Beckert, S., Wagner, S., Ghani, Q. P., Hussain, M. Z., Roy, S. and Sen, C. K. (2007) Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid. Redox Signal. 9, 1115-1124. https://doi.org/10.1089/ars.2007.1674
- Iurlaro, R., Leon-Annicchiarico, C. L. and Munoz-Pinedo, C. (2014) Regulation of cancer metabolism by oncogenes and tumor suppressors. Methods Enzymol. 542, 59-80.
- Izzo, F., Marra, P., Beneduce, G., Castello, G., Vallone, P., De Rosa, V., Cremona, F., Ensor, C. M., Holtsberg, F. W., Bomalaski, J. S., Clark, M. A., Ng, C. and Curley, S. A. (2004) Pegylated arginine deiminase treatment of patients with unresectable hepatocellular carcinoma: results from phase I/II studies. J. Clin. Oncol. 22, 1815-1822. https://doi.org/10.1200/JCO.2004.11.120
- Jeon, Y. J., Khelifa, S., Ratnikov, B., Scott, D. A., Feng, Y., Parisi, F., Ruller, C., Lau, E., Kim, H., Brill, L. M., Jiang, T., Rimm, D. L., Cardiff, R. D., Mills, G. B., Smith, J. W., Osterman, A. L., Kluger, Y. and Ronai, Z. A. (2015) Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell 27, 354-369. https://doi.org/10.1016/j.ccell.2015.02.006
- Ji, H., Ramsey, M. R., Hayes, D. N., Fan, C., McNamara, K., Kozlowski, P., Torrice, C., Wu, M. C., Shimamura, T., Perera, S. A., Liang, M. C., Cai, D., Naumov, G. N., Bao, L., Contreras, C. M., Li, D., Chen, L., Krishnamurthy, J., Koivunen, J., Chirieac, L. R., Padera, R. F., Bronson, R. T., Lindeman, N. I., Christiani, D. C., Lin, X., Shapiro, G. I., Janne, P. A., Johnson, B. E., Meyerson, M., Kwiatkowski, D. J., Castrillon, D. H., Bardeesy, N., Sharpless, N. E. and Wong, K. K. (2007) LKB1 modulates lung cancer differentiation and metastasis. Nature 448, 807-810. https://doi.org/10.1038/nature06030
- Katayama, R., Lovly, C. M. and Shaw, A. T. (2015) Therapeutic targeting of anaplastic lymphoma kinase in lung cancer: a paradigm for precision cancer medicine. Clin. Cancer Res. 21, 2227-2235. https://doi.org/10.1158/1078-0432.CCR-14-2791
- Kawada, K., Toda, K. and Sakai, Y. (2017) Targeting metabolic reprogramming in KRAS-driven cancers. Int. J. Clin. Oncol. 22, 651-659. https://doi.org/10.1007/s10147-017-1156-4
- Kempf, E., Rousseau, B., Besse, B. and Paz-Ares, L. (2016) KRAS oncogene in lung cancer: focus on molecularly driven clinical trials. Eur. Respir. Rev. 25, 71-76. https://doi.org/10.1183/16000617.0071-2015
- Kerr, E. M. and Martins, C. P. (2017) Metabolic rewiring in mutant Kras lung cancer. FEBS J. doi: 10.1111/febs.14125 [Epub ahead of print].
- Kim, J., Hu, Z., Cai, L., Li, K., Choi, E., Faubert, B., Bezwada, D., Rodriguez-Canales, J., Villalobos, P., Lin, Y.-F., Ni, M., Huffman, K. E., Girard, L., Byers, L. A., Unsal-Kacmaz, K., Peña, C. G., Heymach, J. V., Wauters, E., Vansteenkiste, J., Castrillon, D. H., Chen, B. P. C., Wistuba, I., Lambrechts, D., Xu, J., Minna, J. D. and DeBerardinis, R. J. (2017) CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells. Nature 546, 168-172. https://doi.org/10.1038/nature22359
- Kimmelman, A. C. (2015) Metabolic dependencies in RAS-driven cancers. Clin. Cancer Res. 21, 1828-1834.
- King, A., Selak, M. A. and Gottlieb, E. (2006) Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25, 4675-4682.
- Kroemer, G. and Pouyssegur, J. (2008) Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13, 472-482. https://doi.org/10.1016/j.ccr.2008.05.005
- Kurtzberg, J., Asselin, B., Bernstein, M., Buchanan, G. R., Pollock, B. H. and Camitta, B. M. (2011) Polyethylene glycol-conjugated L-asparaginase versus native L-asparaginase in combination with standard agents for children with acute lymphoblastic leukemia in second bone marrow relapse: a Children's Oncology Group Study (POG 8866). J. Pediatr. Hematol. Oncol. 33, 610-616. https://doi.org/10.1097/MPH.0b013e31822d4d4e
- Levine, A. J. and Puzio-Kuter, A. M. (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330, 1340-1344.
- Li, W., Saud, S. M., Young, M. R., Chen, G. and Hua, B. (2015) Targeting AMPK for cancer prevention and treatment. Oncotarget 6, 7365-7378. https://doi.org/10.18632/oncotarget.3629
- Lin, J. J. and Shaw, A. T. (2016) Resisting resistance: targeted therapies in lung cancer. Trends Cancer 2, 350-364. https://doi.org/10.1016/j.trecan.2016.05.010
- Liu, W., Le, A., Hancock, C., Lane, A. N., Dang, C. V., Fan, T. W. and Phang, J. M. (2012) Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc. Natl. Acad. Sci. U.S.A. 109, 8983-8988. https://doi.org/10.1073/pnas.1203244109
- Locasale, J. W., Grassian, A. R., Melman, T., Lyssiotis, C. A., Mattaini, K. R., Bass, A. J., Heffron, G., Metallo, C. M., Muranen, T., Sharfi, H., Sasaki, A. T., Anastasiou, D., Mullarky, E., Vokes, N. I., Sasaki, M., Beroukhim, R., Stephanopoulos, G., Ligon, A. H., Meyerson, M., Richardson, A. L., Chin, L., Wagner, G., Asara, J. M., Brugge, J. S., Cantley, L. C. and Vander Heiden, M. G. (2011) Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869-874. https://doi.org/10.1038/ng.890
- Lv, J., Wang, J., Chang, S., Liu, M. and Pang, X. (2016) The greedy nature of mutant RAS: a boon for drug discovery targeting cancer metabolism? Acta Biochim. Biophys. Sin. (Shanghai) 48, 17-26.
- Lyssiotis, C. A. and Kimmelman, A. C. (2017) Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27, 863-875. https://doi.org/10.1016/j.tcb.2017.06.003
- Magda, D., Lecane, P., Prescott, J., Thiemann, P., Ma, X., Dranchak, P. K., Toleno, D. M., Ramaswamy, K., Siegmund, K. D. and Hacia, J. G. (2008) mtDNA depletion confers specific gene expression profiles in human cells grown in culture and in xenograft. BMC Genomics 9, 521. https://doi.org/10.1186/1471-2164-9-521
- Mahoney, C. L., Choudhury, B., Davies, H., Edkins, S., Greenman, C., Haaften, G., Mironenko, T., Santarius, T., Stevens, C., Stratton, M. R. and Futreal, P. A. (2009) LKB1/KRAS mutant lung cancers constitute a genetic subset of NSCLC with increased sensitivity to MAPK and mTOR signalling inhibition. Br. J. Cancer 100, 370-375. https://doi.org/10.1038/sj.bjc.6604886
- Mailloux, R. J. (2015) Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol. 4, 381-398. https://doi.org/10.1016/j.redox.2015.02.001
- Makinoshima, H., Takita, M., Matsumoto, S., Yagishita, A., Owada, S., Esumi, H. and Tsuchihara, K. (2014) Epidermal growth factor receptor (EGFR) signaling regulates global metabolic pathways in EGFR-mutated lung adenocarcinoma. J. Biol. Chem. 289, 20813-20823. https://doi.org/10.1074/jbc.M114.575464
- Mannava, S., Grachtchouk, V., Wheeler, L. J., Im, M., Zhuang, D., Slavina, E. G., Mathews, C. K., Shewach, D. S. and Nikiforov, M. A. (2008) Direct role of nucleotide metabolism in C-MYC-dependent proliferation of melanoma cells. Cell Cycle 7, 2392-2400. https://doi.org/10.4161/cc.6390
- Mao, C., Qiu, L. X., Liao, R. Y., Du, F. B., Ding, H., Yang, W. C., Li, J. and Chen, Q. (2010) KRAS mutations and resistance to EGFRTKIs treatment in patients with non-small cell lung cancer: a metaanalysis of 22 studies. Lung Cancer 69, 272-278. https://doi.org/10.1016/j.lungcan.2009.11.020
- Martin-Bernabe, A., Cortes, R., Lehmann, S. G., Seve, M., Cascante, M. and Bourgoin-Voillard, S. (2014) Quantitative proteomic approach to understand metabolic adaptation in non-small cell lung cancer. J. Proteome Res. 13, 4695-4704. https://doi.org/10.1021/pr500327v
- Mathers, C. D. and Loncar, D. (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3, e442. https://doi.org/10.1371/journal.pmed.0030442
- Mayers, J. R., Torrence, M. E., Danai, L. V., Papagiannakopoulos, T., Davidson, S. M., Bauer, M. R., Lau, A. N., Ji, B. W., Dixit, P. D., Hosios, A. M., Muir, A., Chin, C. R., Freinkman, E., Jacks, T., Wolpin, B. M., Vitkup, D. and Vander Heiden, M. G. (2016) Tissue of origin dictates branched-chain amino acid metabolism in mutant Krasdriven cancers. Science 353, 1161-1165. https://doi.org/10.1126/science.aaf5171
- Megchelenbrink, W., Katzir, R., Lu, X., Ruppin, E. and Notebaart, R. A. (2015) Synthetic dosage lethality in the human metabolic network is highly predictive of tumor growth and cancer patient survival. Proc. Natl. Acad. Sci. U.S.A. 112, 12217-12222. https://doi.org/10.1073/pnas.1508573112
- Menendez, J. A. and Lupu, R. (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 7, 763-777.
- Meng, D., Yuan, M., Li, X., Chen, L., Yang, J., Zhao, X., Ma, W. and Xin, J. (2013) Prognostic value of K-RAS mutations in patients with non-small cell lung cancer: a systematic review with meta-analysis. Lung Cancer 81, 1-10. https://doi.org/10.1016/j.lungcan.2013.03.019
- Migita, T., Narita, T., Nomura, K., Miyagi, E., Inazuka, F., Matsuura, M., Ushijima, M., Mashima, T., Seimiya, H., Satoh, Y., Okumura, S., Nakagawa, K. and Ishikawa, Y. (2008) ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. Cancer Res. 68, 8547-8554.
- Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E. and Adjei, A. A. (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 83, 584-594. https://doi.org/10.1016/S0025-6196(11)60735-0
- Momcilovic, M., Bailey, S. T., Lee, J. T., Fishbein, M. C., Magyar, C., Braas, D., Graeber, T., Jackson, N. J., Czernin, J., Emberley, E., Gross, M., Janes, J., Mackinnon, A., Pan, A., Rodriguez, M., Works, M., Zhang, W., Parlati, F., Demo, S., Garon, E., Krysan, K., Walser, T. C., Dubinett, S. M., Sadeghi, S., Christofk, H. R. and Shackelford, D. B. (2017) Targeted inhibition of EGFR and glutaminase induces metabolic crisis in EGFR mutant lung cancer. Cell Rep. 18, 601-610. https://doi.org/10.1016/j.celrep.2016.12.061
- Mondesir, J., Willekens, C., Touat, M. and de Botton, S. (2016) IDH1 and IDH2 mutations as novel therapeutic targets: current perspectives. J. Blood Med. 7, 171-180. https://doi.org/10.2147/JBM.S70716
- Moran, D. M., Trusk, P. B., Pry, K., Paz, K., Sidransky, D. and Bacus, S. S. (2014) KRAS mutation status is associated with enhanced dependency on folate metabolism pathways in non-small cell lung cancer cells. Mol. Cancer Ther. 13, 1611-1624.
- Nagarajan, A., Malvi, P. and Wajapeyee, N. (2016) Oncogene-directed alterations in cancer cell metabolism. Trends Cancer 2, 365-377. https://doi.org/10.1016/j.trecan.2016.06.002
- Newman, A. C. and Maddocks, O. D. K. (2017) One-carbon metabolism in cancer. Br. J. Cancer 116, 1499-1504. https://doi.org/10.1038/bjc.2017.118
- Onetti, R., Baulida, J. and Bassols, A. (1997) Increased glucose transport in ras-transformed fibroblasts: a possible role for N-glycosylation of GLUT1. FEBS Lett. 407, 267-270. https://doi.org/10.1016/S0014-5793(97)00340-2
- Ott, P. A., Carvajal, R. D., Pandit-Taskar, N., Jungbluth, A. A., Hoffman, E. W., Wu, B. W., Bomalaski, J. S., Venhaus, R., Pan, L., Old, L. J., Pavlick, A. C. and Wolchok, J. D. (2013) Phase I/II study of pegylated arginine deiminase (ADI-PEG 20) in patients with advanced melanoma. Invest. New Drugs 31, 425-434.
- Pakala, R., Kreisel, M. and Bachrach, U. (1988) Polyamine metabolism and interconversion in NIH 3T3 and ras-transfected NIH 3T3 cells. Cancer Res. 48, 3336-3340.
- Pao, W. and Miller, V. A. (2005) Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J. Clin. Oncol. 23, 2556-2568. https://doi.org/10.1200/JCO.2005.07.799
- Parker, S. J. and Metallo, C. M. (2015) Metabolic consequences of oncogenic IDH mutations. Pharmacol. Ther. 152, 54-62. https://doi.org/10.1016/j.pharmthera.2015.05.003
- Pavlova, N. N. and Thompson, C. B. (2016) The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27-47. https://doi.org/10.1016/j.cmet.2015.12.006
- Pikor, L. A., Ramnarine, V. R., Lam, S. and Lam, W. L. (2013) Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung Cancer 82, 179-189. https://doi.org/10.1016/j.lungcan.2013.07.025
- Possemato, R., Marks, K. M., Shaul, Y. D., Pacold, M. E., Kim, D., Birsoy, K., Sethumadhavan, S., Woo, H. K., Jang, H. G., Jha, A. K., Chen, W. W., Barrett, F. G., Stransky, N., Tsun, Z. Y., Cowley, G. S., Barretina, J., Kalaany, N. Y., Hsu, P. P., Ottina, K., Chan, A. M., Yuan, B., Garraway, L. A., Root, D. E., Mino-Kenudson, M., Brachtel, E. F., Driggers, E. M. and Sabatini, D. M. (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346-350. https://doi.org/10.1038/nature10350
- Pusch, O., Soucek, T., Hengstschlager-Ottnad, E., Bernaschek, G. and Hengstschlager, M. (1997) Cellular targets for activation by c-Myc include the DNA metabolism enzyme thymidine kinase. DNA Cell Biol. 16, 737-747.
- Pylayeva-Gupta, Y., Grabocka, E. and Bar-Sagi, D. (2011) RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer 11, 761-774. https://doi.org/10.1038/nrc3106
- Quail, D. F. and Joyce, J. A. (2013) Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423-1437. https://doi.org/10.1038/nm.3394
- Ramirez de Molina, A., Rodriguez-Gonzalez, A., Gutierrez, R., Martinez-Pineiro, L., Sanchez, J., Bonilla, F., Rosell, R. and Lacal, J. (2002) Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem. Biophys. Res. Commun. 296, 580-583. https://doi.org/10.1016/S0006-291X(02)00920-8
- Renaud, S., Falcoz, P. E., Schaeffer, M., Guenot, D., Romain, B., Olland, A., Reeb, J., Santelmo, N., Chenard, M. P., Legrain, M., Voegeli, A. C., Beau-Faller, M. and Massard, G. (2015) Prognostic value of the KRAS G12V mutation in 841 surgically resected Caucasian lung adenocarcinoma cases. Br. J. Cancer 113, 1206-1215. https://doi.org/10.1038/bjc.2015.327
- Roberts, P. J. and Stinchcombe, T. E. (2013) KRAS mutation: should we test for it, and does it matter? J. Clin. Oncol. 31, 1112-1121. https://doi.org/10.1200/JCO.2012.43.0454
- Saintigny, P. and Burger, J. A. (2012) Recent advances in non-small cell lung cancer biology and clinical management. Discov. Med. 13, 287-297.
- Saito, T., Chiba, T., Yuki, K., Zen, Y., Oshima, M., Koide, S., Motoyama, T., Ogasawara, S., Suzuki, E., Ooka, Y., Tawada, A., Tada, M., Kanai, F., Takiguchi, Y., Iwama, A. and Yokosuka, O. (2013) Metformin, a diabetes drug, eliminates tumor-initiating hepatocellular carcinoma cells. PLoS ONE 8, e70010. https://doi.org/10.1371/journal.pone.0070010
- Sanchez-Cespedes, M., Parrella, P., Esteller, M., Nomoto, S., Trink, B., Engles, J. M., Westra, W. H., Herman, J. G. and Sidransky, D. (2002) Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res. 62, 3659-3662.
- Scott, D. A., Richardson, A. D., Filipp, F. V., Knutzen, C. A., Chiang, G. G., Ronai, Z. A., Osterman, A. L. and Smith, J. W. (2011) Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect. J. Biol. Chem. 286, 42626-42634. https://doi.org/10.1074/jbc.M111.282046
- Sellers, K., Fox, M. P., Bousamra, M., 2nd, Slone, S. P., Higashi, R. M., Miller, D. M., Wang, Y., Yan, J., Yuneva, M. O., Deshpande, R., Lane, A. N. and Fan, T. W. (2015) Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Invest. 125, 687-698. https://doi.org/10.1172/JCI72873
- Shackelford, D. B., Abt, E., Gerken, L., Vasquez, D. S., Seki, A., Leblanc, M., Wei, L., Fishbein, M. C., Czernin, J., Mischel, P. S. and Shaw, R. J. (2013) LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 23, 143-158. https://doi.org/10.1016/j.ccr.2012.12.008
- Shackelford, D. B. and Shaw, R. J. (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563-575. https://doi.org/10.1038/nrc2676
- Shim, H., Dolde, C., Lewis, B. C., Wu, C. S., Dang, G., Jungmann, R. A., Dalla-Favera, R. and Dang, C. V. (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl. Acad. Sci. U.S.A. 94, 6658-6663. https://doi.org/10.1073/pnas.94.13.6658
- Son, J., Lyssiotis, C. A., Ying, H., Wang, X., Hua, S., Ligorio, M., Perera, R. M., Ferrone, C. R., Mullarky, E., Shyh-Chang, N., Kang, Y., Fleming, J. B., Bardeesy, N., Asara, J. M., Haigis, M. C., DePinho, R. A., Cantley, L. C. and Kimmelman, A. C. (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101-105. https://doi.org/10.1038/nature12040
- Spees, J. L., Olson, S. D., Whitney, M. J. and Prockop, D. J. (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl. Acad. Sci. U.S.A. 103, 1283-1288. https://doi.org/10.1073/pnas.0510511103
- Stolze, B., Reinhart, S., Bulllinger, L., Frohling, S. and Scholl, C. (2015) Comparative analysis of KRAS codon 12, 13, 18, 61, and 117 mutations using human MCF10A isogenic cell lines. Sci. Rep. 5, 8535. https://doi.org/10.1038/srep08535
- Storozhuk, Y., Hopmans, S. N., Sanli, T., Barron, C., Tsiani, E., Cutz, J. C., Pond, G., Wright, J., Singh, G. and Tsakiridis, T. (2013) Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. Br. J. Cancer 108, 2021-2032. https://doi.org/10.1038/bjc.2013.187
- Svensson, R. U., Parker, S. J., Eichner, L. J., Kolar, M. J., Wallace, M., Brun, S. N., Lombardo, P. S., Van Nostrand, J. L., Hutchins, A., Vera, L., Gerken, L., Greenwood, J., Bhat, S., Harriman, G., Westlin, W. F., Harwood, H. J., Jr., Saghatelian, A., Kapeller, R., Metallo, C. M. and Shaw, R. J. (2016) Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat. Med. 22, 1108-1119. https://doi.org/10.1038/nm.4181
- Svensson, R. U. and Shaw, R. J. (2016) Lipid synthesis is a metabolic liability of non-small cell lung cancer. Cold Spring Harb. Symp. Quant. Biol. 81, 93-103. https://doi.org/10.1101/sqb.2016.81.030874
- Swanton, C. and Govindan, R. (2016) Clinical implications of genomic discoveries in lung cancer. N. Engl. J. Med. 374, 1864-1873. https://doi.org/10.1056/NEJMra1504688
- Swietach, P., Vaughan-Jones, R. D. and Harris, A. L. (2007) Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev. 26, 299-310.
- Taylor, C. W., Dorr, R. T., Fanta, P., Hersh, E. M. and Salmon, S. E. (2001) A phase I and pharmacodynamic evaluation of polyethylene glycol-conjugated L-asparaginase in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 47, 83-88. https://doi.org/10.1007/s002800000207
- Tennant, D. A., Duran, R. V. and Gottlieb, E. (2010) Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer 10, 267-277. https://doi.org/10.1038/nrc2817
- Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J. and Jemal, A. (2015) Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87-108.
- Tsun, Z. Y. and Possemato, R. (2015) Amino acid management in cancer. Semin. Cell Dev. Biol. 43, 22-32. https://doi.org/10.1016/j.semcdb.2015.08.002
- Vignot, S., Faivre, S., Aguirre, D. and Raymond, E. (2005) mTORtargeted therapy of cancer with rapamycin derivatives. Ann. Oncol. 16, 525-537. https://doi.org/10.1093/annonc/mdi113
- Wallace, D. C. (2012) Mitochondria and cancer. Nat. Rev. Cancer 12, 685-698. https://doi.org/10.1038/nrc3365
- Wang, H. Q., Altomare, D. A., Skele, K. L., Poulikakos, P. I., Kuhajda, F. P., Di Cristofano, A. and Testa, J. R. (2005) Positive feedback regulation between AKT activation and fatty acid synthase expression in ovarian carcinoma cells. Oncogene 24, 3574-3582. https://doi.org/10.1038/sj.onc.1208463
- Warburg, O. (1956) On the origin of cancer cells. Science 123, 309-314. https://doi.org/10.1126/science.123.3191.309
- Weinberg, F., Hamanaka, R., Wheaton, W. W., Weinberg, S., Joseph, J., Lopez, M., Kalyanaraman, B., Mutlu, G. M., Budinger, G. R. and Chandel, N. S. (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. U.S.A. 107, 8788-8793. https://doi.org/10.1073/pnas.1003428107
- Whang, Y. M., Park, S. I., Trenary, I. A., Egnatchik, R. A., Fessel, J. P., Kaufman, J. M., Carbone, D. P. and Young, J. D. (2016) LKB1 deficiency enhances sensitivity to energetic stress induced by erlotinib treatment in non-small-cell lung cancer (NSCLC) cells. Oncogene 35, 856-866. https://doi.org/10.1038/onc.2015.140
- Whitaker-Menezes, D., Martinez-Outschoorn, U. E., Flomenberg, N., Birbe, R. C., Witkiewicz, A. K., Howell, A., Pavlides, S., Tsirigos, A., Ertel, A., Pestell, R. G., Broda, P., Minetti, C., Lisanti, M. P. and Sotgia, F. (2011) Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle 10, 4047-4064. https://doi.org/10.4161/cc.10.23.18151
- Wick, A. N., Drury, D. R., Nakada, H. I. and Wolfe, J. B. (1957) Localization of the primary metabolic block produced by 2-deoxyglucose. J. Biol. Chem. 224, 963-969.
- Wise, D. R. and Thompson, C. B. (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci. 35, 427-433. https://doi.org/10.1016/j.tibs.2010.05.003
- Wu, R., Galan-Acosta, L. and Norberg, E. (2015) Glucose metabolism provide distinct prosurvival benefits to non-small cell lung carcinomas. Biochem. Biophys. Res. Commun. 460, 572-577.
- Yang, T. S., Lu, S. N., Chao, Y., Sheen, I. S., Lin, C. C., Wang, T. E., Chen, S. C., Wang, J. H., Liao, L. Y., Thomson, J. A., Wang-Peng, J., Chen, P. J. and Chen, L. T. (2010) A randomised phase II study of pegylated arginine deiminase (ADI-PEG 20) in Asian advanced hepatocellular carcinoma patients. Br. J. Cancer 103, 954-960. https://doi.org/10.1038/sj.bjc.6605856
- Yau, T., Cheng, P. N., Chan, P., Chan, W., Chen, L., Yuen, J., Pang, R., Fan, S. T. and Poon, R. T. (2013) A phase 1 dose-escalating study of pegylated recombinant human arginase 1 (Peg-rhArg1) in patients with advanced hepatocellular carcinoma. Invest. New Drugs 31, 99-107.
- Ying, H., Kimmelman, A. C., Lyssiotis, C. A., Hua, S., Chu, G. C., Fletcher-Sananikone, E., Locasale, J. W., Son, J., Zhang, H., Coloff, J. L., Yan, H., Wang, W., Chen, S., Viale, A., Zheng, H., Paik, J. H., Lim, C., Guimaraes, A. R., Martin, E. S., Chang, J., Hezel, A. F., Perry, S. R., Hu, J., Gan, B., Xiao, Y., Asara, J. M., Weissleder, R., Wang, Y. A., Chin, L., Cantley, L. C. and DePinho, R. A. (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656-670. https://doi.org/10.1016/j.cell.2012.01.058
- Yuneva, M. O., Fan, T. W., Allen, T. D., Higashi, R. M., Ferraris, D. V., Tsukamoto, T., Mates, J. M., Alonso, F. J., Wang, C., Seo, Y., Chen, X. and Bishop, J. M. (2012) The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15, 157-170. https://doi.org/10.1016/j.cmet.2011.12.015
- Zhang, J., Fan, J., Venneti, S., Cross, J. R., Takagi, T., Bhinder, B., Djaballah, H., Kanai, M., Cheng, E. H., Judkins, A. R., Pawel, B., Baggs, J., Cherry, S., Rabinowitz, J. D. and Thompson, C. B. (2014a) Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol. Cell 56, 205-218. https://doi.org/10.1016/j.molcel.2014.08.018
- Zhang, J., Song, F., Zhao, X., Jiang, H., Wu, X., Wang, B., Zhou, M., Tian, M., Shi, B., Wang, H., Jia, Y., Wang, H., Pan, X. and Li, Z. (2017) EGFR modulates monounsaturated fatty acid synthesis through phosphorylation of SCD1 in lung cancer. Mol. Cancer 16, 127. https://doi.org/10.1186/s12943-017-0704-x
- Zhang, W. C., Shyh-Chang, N., Yang, H., Rai, A., Umashankar, S., Ma, S., Soh, B. S., Sun, L. L., Tai, B. C., Nga, M. E., Bhakoo, K. K., Jayapal, S. R., Nichane, M., Yu, Q., Ahmed, D. A., Tan, C., Sing, W. P., Tam, J., Thirugananam, A., Noghabi, M. S., Pang, Y. H., Ang, H. S., Mitchell, W., Robson, P., Kaldis, P., Soo, R. A., Swarup, S., Lim, E. H. and Lim, B. (2012) Glycine decarboxylase activity drives nonsmall cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148, 259-272. https://doi.org/10.1016/j.cell.2011.11.050
- Zhang, Y., Storr, S. J., Johnson, K., Green, A. R., Rakha, E. A., Ellis, I. O., Morgan, D. A. and Martin, S. G. (2014b) Involvement of metformin and AMPK in the radioresponse and prognosis of luminal versus basal-like breast cancer treated with radiotherapy. Oncotarget 5, 12936-12949.
- Zhang, Z., Stiegler, A. L., Boggon, T. J., Kobayashi, S. and Halmos, B. (2010) EGFR-mutated lung cancer: a paradigm of molecular oncology. Oncotarget 1, 497-514.
Cited by
- Cancer Metabolism: a Hope for Curing Cancer vol.26, pp.1, 2018, https://doi.org/10.4062/biomolther.2017.300
- Overexpression of SLC25A15 is involved in the proliferation of cutaneous melanoma and leads to poor prognosis vol.34, pp.1958-5381, 2018, https://doi.org/10.1051/medsci/201834f113
- Metabolic Reprogramming of Cancer Associated Fibroblasts: The Slavery of Stromal Fibroblasts vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/6075403
- Facile Preparation of Reduction-Responsive Micelles Based on Biodegradable Amphiphilic Polyurethane with Disulfide Bonds in the Backbone vol.11, pp.2, 2019, https://doi.org/10.3390/polym11020262
- mTORC1 as a Regulator of Mitochondrial Functions and a Therapeutic Target in Cancer vol.9, pp.None, 2018, https://doi.org/10.3389/fonc.2019.01373
- Targeting cancer energy metabolism: a potential systemic cure for cancer vol.42, pp.2, 2019, https://doi.org/10.1007/s12272-019-01115-2
- AXL degradation in combination with EGFR-TKI can delay and overcome acquired resistance in human non-small cell lung cancer cells vol.10, pp.5, 2019, https://doi.org/10.1038/s41419-019-1601-6
- Untangling the Metabolic Reprogramming in Brain Cancer: Discovering Key Molecular Players Using Mass Spectrometry vol.19, pp.17, 2018, https://doi.org/10.2174/1568026619666190729154543
- Functions of metabolic enzymes in the development of non‐small cell lung cancer vol.10, pp.9, 2019, https://doi.org/10.1111/1759-7714.13147
- Metabolic Remodelling: An Accomplice for New Therapeutic Strategies to Fight Lung Cancer vol.8, pp.12, 2018, https://doi.org/10.3390/antiox8120603
- The Double-Edge Sword of Autophagy in Cancer: From Tumor Suppression to Pro-tumor Activity vol.10, pp.None, 2018, https://doi.org/10.3389/fonc.2020.578418
- Multi-Task Topic Analysis Framework for Hallmarks of Cancer with Weak Supervision vol.10, pp.3, 2020, https://doi.org/10.3390/app10030834
- SREBP1 regulates mitochondrial metabolism in oncogenic KRAS expressing NSCLC vol.34, pp.8, 2020, https://doi.org/10.1096/fj.202000052r
- Quantitative proteomics revealed energy metabolism pathway alterations in human epithelial ovarian carcinoma and their regulation by the antiparasite drug ivermectin: data interpretation in the contex vol.11, pp.4, 2018, https://doi.org/10.1007/s13167-020-00224-z
- Research progress of nanocarriers for gene therapy targeting abnormal glucose and lipid metabolism in tumors vol.28, pp.1, 2018, https://doi.org/10.1080/10717544.2021.1995081
- E3 ubiquitin ligase UBR5 promotes pancreatic cancer growth and aerobic glycolysis by downregulating FBP1 via destabilization of C/EBPα vol.40, pp.2, 2018, https://doi.org/10.1038/s41388-020-01527-1
- Microenvironmental Factors Modulating Tumor Lipid Metabolism: Paving the Way to Better Antitumoral Therapy vol.11, pp.None, 2018, https://doi.org/10.3389/fonc.2021.777273