References
- Carracedo, A., Cantley, L. C. and Pandolfi, P. P. (2013) Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer 13, 227-232. https://doi.org/10.1038/nrc3483
- Chandel, N. S., Budinger, G. R., Choe, S. H. and Schumacker, P. T. (1997) Cellular respiration during hypoxia. Role of cytochrome oxidase as the oxygen sensor in hepatocytes. J. Biol. Chem. 272, 18808-18816. https://doi.org/10.1074/jbc.272.30.18808
- Cheong, J. H., Park, E. S., Liang, J., Dennison, J. B., Tsavachidou, D., Nguyen-Charles, C., Wa Cheng, K., Hall, H., Zhang, D., Lu, Y., Ravoori, M., Kundra, V., Ajani, J., Lee, J. S., Ki Hong, W. and Mills, G. B. (2011) Dual inhibition of tumor energy pathway by 2-deoxyglucose and metformin is effective against a broad spectrum of preclinical cancer models. Mol. Cancer Ther. 10, 2350-2362. https://doi.org/10.1158/1535-7163.MCT-11-0497
- DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. and Thompson, C. B. (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11-20. https://doi.org/10.1016/j.cmet.2007.10.002
- DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S. and Thompson, C. B. (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U.S.A. 104, 19345-19350. https://doi.org/10.1073/pnas.0709747104
- Faubert, B., Li, K. Y., Cai, L., Hensley, C. T., Kim, J., Zacharias, L. G., Yang, C., Do, Q. N., Doucette, S., Burguete, D., Li, H., Huet, G., Yuan, Q., Wigal, T., Butt, Y., Ni, M., Torrealba, J., Oliver, D., Lenkinski, R. E., Malloy, C. R., Wachsmann, J. W., Young, J. D., Kernstine, K. and DeBerardinis, R. J. (2017) Lactate metabolism in human lung tumors. Cell 171, 358-371.e9. https://doi.org/10.1016/j.cell.2017.09.019
- Greenhouse, W. V. and Lehninger, A. L. (1977) Magnitude of malateaspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells. Cancer Res. 37, 4173-4181.
- Kang, J. H., Lee, S. H., Hong, D., Lee, J. S., Ahn, H. S., Ahn, J. H., Seong, T. W., Lee, C. H., Jang, H., Hong, K. M., Lee, C., Lee, J. H. and Kim, S. Y. (2016a) Aldehyde dehydrogenase is used by cancer cells for energy metabolism. Exp. Mol. Med. 48, e272. https://doi.org/10.1038/emm.2016.103
- Kang, J. H., Lee, S. H., Lee, J. S., Nam, B., Seong, T. W., Son, J., Jang, H., Hong, K. M., Lee, C. and Kim, S. Y. (2016b) Aldehyde dehydrogenase inhibition combined with phenformin treatment reversed NSCLC through ATP depletion. Oncotarget 7, 49397-49410.
- Kim, J. W., Tchernyshyov, I., Semenza, G. L. and Dang, C. V. (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177-185. https://doi.org/10.1016/j.cmet.2006.02.002
- Lee, J. S., Kang, J. H., Lee, S. H., Hong, D., Son, J., Hong, K. M., Song, J. and Kim, S. Y. (2016a) Dual targeting of glutaminase 1 and thymidylate synthase elicits death synergistically in NSCLC. Cell Death Dis. 7, e2511. https://doi.org/10.1038/cddis.2016.404
- Lee, J. S., Kang, J. H., Lee, S. H., Lee, C. H., Son, J. and Kim, S. Y. (2016b) Glutaminase 1 inhibition reduces thymidine synthesis in NSCLC. Biochem. Biophys. Res. Commun. 477, 374-382. https://doi.org/10.1016/j.bbrc.2016.06.095
- McKeehan, W. L. (1982) Glycolysis, glutaminolysis and cell proliferation. Cell Biol. Int. Rep. 6, 635-650. https://doi.org/10.1016/0309-1651(82)90125-4
- Pascual, G., Avgustinova, A., Mejetta, S., Martin, M., Castellanos, A., Attolini, C. S., Berenguer, A., Prats, N., Toll, A., Hueto, J. A., Bescos, C., Di Croce, L. and Benitah, S. A. (2017) Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41-45. https://doi.org/10.1038/nature20791
- Patra, K. C. and Hay, N. (2014) The pentose phosphate pathway and cancer. Trends Biochem. Sci. 39, 347-354.
- Reitzer, L. J., Wice, B. M. and Kennell, D. (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J. Biol. Chem. 254, 2669-2676.
- Sonveaux, P., Vegran, F., Schroeder, T., Wergin, M. C., Verrax, J., Rabbani, Z. N., De Saedeleer, C. J., Kennedy, K. M., Diepart, C., Jordan, B. F., Kelley, M. J., Gallez, B., Wahl, M. L., Feron, O. and Dewhirst, M. W. (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930-3942.
- Warburg, O. (1956a) On respiratory impairment in cancer cells. Science 124, 269-270.
- Warburg, O. (1956b) On the origin of cancer cells. Science 123, 309-314. https://doi.org/10.1126/science.123.3191.309
- Wu, L., Feng, Z., Cui, S., Hou, K., Tang, L., Zhou, J., Cai, G., Xie, Y., Hong, Q., Fu, B. and Chen, X. (2013) Rapamycin upregulates autophagy by inhibiting the mTOR-ULK1 pathway, resulting in reduced podocyte injury. PLoS ONE 8, e63799. https://doi.org/10.1371/journal.pone.0063799
- Yang, M. and Vousden, K. H. (2016) Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16, 650-662. https://doi.org/10.1038/nrc.2016.81
- Zaidi, N., Swinnen, J. V. and Smans, K. (2012) ATP-citrate lyase: a key player in cancer metabolism. Cancer Res. 72, 3709-3714. https://doi.org/10.1158/0008-5472.CAN-11-4112
Cited by
- Metabolic Symbiosis and Immunomodulation: How Tumor Cell-Derived Lactate May Disturb Innate and Adaptive Immune Responses vol.8, pp.2234-943X, 2018, https://doi.org/10.3389/fonc.2018.00081
- Cancer Metabolism: a Hope for Curing Cancer vol.26, pp.1, 2018, https://doi.org/10.4062/biomolther.2017.300
- Investigation into Cellular Glycolysis for the Mechanism Study of Energy Metabolism Disorder Triggered by Lipopolysaccharide vol.10, pp.11, 2018, https://doi.org/10.3390/toxins10110441
- Targeting Mitochondrial Oxidative Phosphorylation Abrogated Irinotecan Resistance in NSCLC vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-33667-6
- NMR metabolomics study of follicular fluid in women with cancer resorting to fertility preservation pp.1573-7330, 2018, https://doi.org/10.1007/s10815-018-1281-7
- Targeting Tumor Microenvironment for Cancer Therapy vol.20, pp.4, 2019, https://doi.org/10.3390/ijms20040840
- Lactate secreted by cervical cancer cells modulates macrophage phenotype pp.07415400, 2019, https://doi.org/10.1002/JLB.3A0718-274RR
- Pathway Analysis of Fucoidan Activity Using a Yeast Gene Deletion Library Screen vol.17, pp.1, 2019, https://doi.org/10.3390/md17010054
- Oncogenic Metabolism Acts as a Prerequisite Step for Induction of Cancer Metastasis and Cancer Stem Cell Phenotype vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/1027453
- Association Between Pretreatment Serum Apolipoprotein A1 and Prognosis of Solid Tumors in Chinese Population: A Systematic Review and Meta-Analysis vol.51, pp.2, 2018, https://doi.org/10.1159/000495277
- Targeting cancer energy metabolism: a potential systemic cure for cancer vol.42, pp.2, 2019, https://doi.org/10.1007/s12272-019-01115-2
- Effect of butein and glucose on oxidative stress and p38 activation marker in non-small cell lung cancer cell vol.38, pp.10, 2019, https://doi.org/10.1177/0960327119851250
- Differential Mechanism of ATP Production Occurs in Response to Succinylacetone in Colon Cancer Cells vol.24, pp.19, 2018, https://doi.org/10.3390/molecules24193575
- Role of Sphingosylphosphorylcholine in Tumor and Tumor Microenvironment vol.11, pp.11, 2018, https://doi.org/10.3390/cancers11111696
- Recent Progress in Lab-On-a-Chip Systems for the Monitoring of Metabolites for Mammalian and Microbial Cell Research vol.19, pp.22, 2019, https://doi.org/10.3390/s19225027
- Revisiting the Warburg Effect: Diet-Based Strategies for Cancer Prevention vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8105735
- New desulfured troglitazone derivatives: Improved synthesis and biological evaluation vol.187, pp.None, 2020, https://doi.org/10.1016/j.ejmech.2019.111939
- NAD- and NADPH-Contributing Enzymes as Therapeutic Targets in Cancer: An Overview vol.10, pp.3, 2018, https://doi.org/10.3390/biom10030358
- The choice of tissue fixative is a key determinant for mass spectrometry imaging based tumor metabolic reprogramming characterization vol.412, pp.13, 2018, https://doi.org/10.1007/s00216-020-02562-3
- Redox Homeostasis and Metabolism in Cancer: A Complex Mechanism and Potential Targeted Therapeutics vol.21, pp.9, 2020, https://doi.org/10.3390/ijms21093100
- Potential biomarkers in septic shock besides lactate vol.245, pp.12, 2018, https://doi.org/10.1177/1535370220919076
- Role of Mitochondria-Cytoskeleton Interactions in the Regulation of Mitochondrial Structure and Function in Cancer Stem Cells vol.9, pp.7, 2020, https://doi.org/10.3390/cells9071691
- Biomarkers of tumor invasiveness in proteomics (Review) vol.57, pp.2, 2018, https://doi.org/10.3892/ijo.2020.5075
- ATP Production Relies on Fatty Acid Oxidation Rather than Glycolysis in Pancreatic Ductal Adenocarcinoma vol.12, pp.9, 2018, https://doi.org/10.3390/cancers12092477
- Targeting Oxidative Phosphorylation Reverses Drug Resistance in Cancer Cells by Blocking Autophagy Recycling vol.9, pp.9, 2018, https://doi.org/10.3390/cells9092013
- Three cytosolic NAD-malate dehydrogenase isoforms of Arabidopsis thaliana : on the crossroad between energy fluxes and redox signaling vol.477, pp.19, 2018, https://doi.org/10.1042/bcj20200240
- Oxoglutarate Carrier Inhibition Reduced Melanoma Growth and Invasion by Reducing ATP Production vol.12, pp.11, 2018, https://doi.org/10.3390/pharmaceutics12111128
- Synthesis and analysis of silver-copper alloy nanoparticles of different ratios manifest anticancer activity in breast cancer cells vol.11, pp.1, 2018, https://doi.org/10.1186/s12645-020-00069-1
- Inhibition of glutaminase to reverse fibrosis in iatrogenic laryngotracheal stenosis vol.130, pp.12, 2020, https://doi.org/10.1002/lary.28493
- Finding distinctions between oral cancer and periodontitis using saliva metabolites and machine learning vol.27, pp.3, 2018, https://doi.org/10.1111/odi.13591
- Tumor pyruvate kinase M2 modulators: a comprehensive account of activators and inhibitors as anticancer agents vol.12, pp.7, 2018, https://doi.org/10.1039/d1md00045d
- Calcium Peroxide-Based Nanosystem with Cancer Microenvironment-Activated Capabilities for Imaging Guided Combination Therapy via Mitochondrial Ca2+ Overload and Chemotherapy vol.13, pp.37, 2018, https://doi.org/10.1021/acsami.1c13304
- Integration of Transcriptomics and Metabolomics to Reveal the Molecular Mechanisms Underlying Rhodium Nanoparticles-Based Photodynamic Cancer Therapy vol.13, pp.10, 2018, https://doi.org/10.3390/pharmaceutics13101629
- Role of Energy Metabolism in the Progression of Neuroblastoma vol.22, pp.21, 2018, https://doi.org/10.3390/ijms222111421
- Nicotinamide adenine dinucleotide and the sirtuins caution: Pro‐cancer functions vol.4, pp.4, 2018, https://doi.org/10.1002/agm2.12184
- Identification of the first highly selective inhibitor of human lactate dehydrogenase B vol.11, pp.1, 2018, https://doi.org/10.1038/s41598-021-00820-7
- Mitochondrial Transport in Glycolysis and Gluconeogenesis: Achievements and Perspectives vol.22, pp.23, 2018, https://doi.org/10.3390/ijms222312620