DOI QR코드

DOI QR Code

Cancer Energy Metabolism: Shutting Power off Cancer Factory

  • Kim, Soo-Youl (Cancer Microenvironment Branch, Division of Cancer Biology, Research Institute, National Cancer Center)
  • Received : 2017.09.14
  • Accepted : 2017.10.19
  • Published : 2018.01.01

Abstract

In 1923, Dr. Warburg had observed that tumors acidified the Ringer solution when 13 mM glucose was added, which was identified as being due to lactate. When glucose is the only source of nutrient, it can serve for both biosynthesis and energy production. However, a series of studies revealed that the cancer cell consumes glucose for biosynthesis through fermentation, not for energy supply, under physiological conditions. Recently, a new observation was made that there is a metabolic symbiosis in which glycolytic and oxidative tumor cells mutually regulate their energy metabolism. Hypoxic cancer cells use glucose for glycolytic metabolism and release lactate which is used by oxygenated cancer cells. This study challenged the Warburg effect, because Warburg claimed that fermentation by irreversible damaging of mitochondria is a fundamental cause of cancer. However, recent studies revealed that mitochondria in cancer cell show active function of oxidative phosphorylation although TCA cycle is stalled. It was also shown that blocking cytosolic NADH production by aldehyde dehydrogenase inhibition, combined with oxidative phosphorylation inhibition, resulted in up to 80% decrease of ATP production, which resulted in a significant regression of tumor growth in the NSCLC model. This suggests a new theory that NADH production in the cytosol plays a key role of ATP production through the mitochondrial electron transport chain in cancer cells, while NADH production is mostly occupied inside mitochondria in normal cells.

Keywords

References

  1. Carracedo, A., Cantley, L. C. and Pandolfi, P. P. (2013) Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer 13, 227-232. https://doi.org/10.1038/nrc3483
  2. Chandel, N. S., Budinger, G. R., Choe, S. H. and Schumacker, P. T. (1997) Cellular respiration during hypoxia. Role of cytochrome oxidase as the oxygen sensor in hepatocytes. J. Biol. Chem. 272, 18808-18816. https://doi.org/10.1074/jbc.272.30.18808
  3. Cheong, J. H., Park, E. S., Liang, J., Dennison, J. B., Tsavachidou, D., Nguyen-Charles, C., Wa Cheng, K., Hall, H., Zhang, D., Lu, Y., Ravoori, M., Kundra, V., Ajani, J., Lee, J. S., Ki Hong, W. and Mills, G. B. (2011) Dual inhibition of tumor energy pathway by 2-deoxyglucose and metformin is effective against a broad spectrum of preclinical cancer models. Mol. Cancer Ther. 10, 2350-2362. https://doi.org/10.1158/1535-7163.MCT-11-0497
  4. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. and Thompson, C. B. (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11-20. https://doi.org/10.1016/j.cmet.2007.10.002
  5. DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S. and Thompson, C. B. (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U.S.A. 104, 19345-19350. https://doi.org/10.1073/pnas.0709747104
  6. Faubert, B., Li, K. Y., Cai, L., Hensley, C. T., Kim, J., Zacharias, L. G., Yang, C., Do, Q. N., Doucette, S., Burguete, D., Li, H., Huet, G., Yuan, Q., Wigal, T., Butt, Y., Ni, M., Torrealba, J., Oliver, D., Lenkinski, R. E., Malloy, C. R., Wachsmann, J. W., Young, J. D., Kernstine, K. and DeBerardinis, R. J. (2017) Lactate metabolism in human lung tumors. Cell 171, 358-371.e9. https://doi.org/10.1016/j.cell.2017.09.019
  7. Greenhouse, W. V. and Lehninger, A. L. (1977) Magnitude of malateaspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells. Cancer Res. 37, 4173-4181.
  8. Kang, J. H., Lee, S. H., Hong, D., Lee, J. S., Ahn, H. S., Ahn, J. H., Seong, T. W., Lee, C. H., Jang, H., Hong, K. M., Lee, C., Lee, J. H. and Kim, S. Y. (2016a) Aldehyde dehydrogenase is used by cancer cells for energy metabolism. Exp. Mol. Med. 48, e272. https://doi.org/10.1038/emm.2016.103
  9. Kang, J. H., Lee, S. H., Lee, J. S., Nam, B., Seong, T. W., Son, J., Jang, H., Hong, K. M., Lee, C. and Kim, S. Y. (2016b) Aldehyde dehydrogenase inhibition combined with phenformin treatment reversed NSCLC through ATP depletion. Oncotarget 7, 49397-49410.
  10. Kim, J. W., Tchernyshyov, I., Semenza, G. L. and Dang, C. V. (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177-185. https://doi.org/10.1016/j.cmet.2006.02.002
  11. Lee, J. S., Kang, J. H., Lee, S. H., Hong, D., Son, J., Hong, K. M., Song, J. and Kim, S. Y. (2016a) Dual targeting of glutaminase 1 and thymidylate synthase elicits death synergistically in NSCLC. Cell Death Dis. 7, e2511. https://doi.org/10.1038/cddis.2016.404
  12. Lee, J. S., Kang, J. H., Lee, S. H., Lee, C. H., Son, J. and Kim, S. Y. (2016b) Glutaminase 1 inhibition reduces thymidine synthesis in NSCLC. Biochem. Biophys. Res. Commun. 477, 374-382. https://doi.org/10.1016/j.bbrc.2016.06.095
  13. McKeehan, W. L. (1982) Glycolysis, glutaminolysis and cell proliferation. Cell Biol. Int. Rep. 6, 635-650. https://doi.org/10.1016/0309-1651(82)90125-4
  14. Pascual, G., Avgustinova, A., Mejetta, S., Martin, M., Castellanos, A., Attolini, C. S., Berenguer, A., Prats, N., Toll, A., Hueto, J. A., Bescos, C., Di Croce, L. and Benitah, S. A. (2017) Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41-45. https://doi.org/10.1038/nature20791
  15. Patra, K. C. and Hay, N. (2014) The pentose phosphate pathway and cancer. Trends Biochem. Sci. 39, 347-354.
  16. Reitzer, L. J., Wice, B. M. and Kennell, D. (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J. Biol. Chem. 254, 2669-2676.
  17. Sonveaux, P., Vegran, F., Schroeder, T., Wergin, M. C., Verrax, J., Rabbani, Z. N., De Saedeleer, C. J., Kennedy, K. M., Diepart, C., Jordan, B. F., Kelley, M. J., Gallez, B., Wahl, M. L., Feron, O. and Dewhirst, M. W. (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930-3942.
  18. Warburg, O. (1956a) On respiratory impairment in cancer cells. Science 124, 269-270.
  19. Warburg, O. (1956b) On the origin of cancer cells. Science 123, 309-314. https://doi.org/10.1126/science.123.3191.309
  20. Wu, L., Feng, Z., Cui, S., Hou, K., Tang, L., Zhou, J., Cai, G., Xie, Y., Hong, Q., Fu, B. and Chen, X. (2013) Rapamycin upregulates autophagy by inhibiting the mTOR-ULK1 pathway, resulting in reduced podocyte injury. PLoS ONE 8, e63799. https://doi.org/10.1371/journal.pone.0063799
  21. Yang, M. and Vousden, K. H. (2016) Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16, 650-662. https://doi.org/10.1038/nrc.2016.81
  22. Zaidi, N., Swinnen, J. V. and Smans, K. (2012) ATP-citrate lyase: a key player in cancer metabolism. Cancer Res. 72, 3709-3714. https://doi.org/10.1158/0008-5472.CAN-11-4112

Cited by

  1. Metabolic Symbiosis and Immunomodulation: How Tumor Cell-Derived Lactate May Disturb Innate and Adaptive Immune Responses vol.8, pp.2234-943X, 2018, https://doi.org/10.3389/fonc.2018.00081
  2. Cancer Metabolism: a Hope for Curing Cancer vol.26, pp.1, 2018, https://doi.org/10.4062/biomolther.2017.300
  3. Investigation into Cellular Glycolysis for the Mechanism Study of Energy Metabolism Disorder Triggered by Lipopolysaccharide vol.10, pp.11, 2018, https://doi.org/10.3390/toxins10110441
  4. Targeting Mitochondrial Oxidative Phosphorylation Abrogated Irinotecan Resistance in NSCLC vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-33667-6
  5. NMR metabolomics study of follicular fluid in women with cancer resorting to fertility preservation pp.1573-7330, 2018, https://doi.org/10.1007/s10815-018-1281-7
  6. Targeting Tumor Microenvironment for Cancer Therapy vol.20, pp.4, 2019, https://doi.org/10.3390/ijms20040840
  7. Lactate secreted by cervical cancer cells modulates macrophage phenotype pp.07415400, 2019, https://doi.org/10.1002/JLB.3A0718-274RR
  8. Pathway Analysis of Fucoidan Activity Using a Yeast Gene Deletion Library Screen vol.17, pp.1, 2019, https://doi.org/10.3390/md17010054
  9. Oncogenic Metabolism Acts as a Prerequisite Step for Induction of Cancer Metastasis and Cancer Stem Cell Phenotype vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/1027453
  10. Association Between Pretreatment Serum Apolipoprotein A1 and Prognosis of Solid Tumors in Chinese Population: A Systematic Review and Meta-Analysis vol.51, pp.2, 2018, https://doi.org/10.1159/000495277
  11. Targeting cancer energy metabolism: a potential systemic cure for cancer vol.42, pp.2, 2019, https://doi.org/10.1007/s12272-019-01115-2
  12. Effect of butein and glucose on oxidative stress and p38 activation marker in non-small cell lung cancer cell vol.38, pp.10, 2019, https://doi.org/10.1177/0960327119851250
  13. Differential Mechanism of ATP Production Occurs in Response to Succinylacetone in Colon Cancer Cells vol.24, pp.19, 2018, https://doi.org/10.3390/molecules24193575
  14. Role of Sphingosylphosphorylcholine in Tumor and Tumor Microenvironment vol.11, pp.11, 2018, https://doi.org/10.3390/cancers11111696
  15. Recent Progress in Lab-On-a-Chip Systems for the Monitoring of Metabolites for Mammalian and Microbial Cell Research vol.19, pp.22, 2019, https://doi.org/10.3390/s19225027
  16. Revisiting the Warburg Effect: Diet-Based Strategies for Cancer Prevention vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8105735
  17. New desulfured troglitazone derivatives: Improved synthesis and biological evaluation vol.187, pp.None, 2020, https://doi.org/10.1016/j.ejmech.2019.111939
  18. NAD- and NADPH-Contributing Enzymes as Therapeutic Targets in Cancer: An Overview vol.10, pp.3, 2018, https://doi.org/10.3390/biom10030358
  19. The choice of tissue fixative is a key determinant for mass spectrometry imaging based tumor metabolic reprogramming characterization vol.412, pp.13, 2018, https://doi.org/10.1007/s00216-020-02562-3
  20. Redox Homeostasis and Metabolism in Cancer: A Complex Mechanism and Potential Targeted Therapeutics vol.21, pp.9, 2020, https://doi.org/10.3390/ijms21093100
  21. Potential biomarkers in septic shock besides lactate vol.245, pp.12, 2018, https://doi.org/10.1177/1535370220919076
  22. Role of Mitochondria-Cytoskeleton Interactions in the Regulation of Mitochondrial Structure and Function in Cancer Stem Cells vol.9, pp.7, 2020, https://doi.org/10.3390/cells9071691
  23. Biomarkers of tumor invasiveness in proteomics (Review) vol.57, pp.2, 2018, https://doi.org/10.3892/ijo.2020.5075
  24. ATP Production Relies on Fatty Acid Oxidation Rather than Glycolysis in Pancreatic Ductal Adenocarcinoma vol.12, pp.9, 2018, https://doi.org/10.3390/cancers12092477
  25. Targeting Oxidative Phosphorylation Reverses Drug Resistance in Cancer Cells by Blocking Autophagy Recycling vol.9, pp.9, 2018, https://doi.org/10.3390/cells9092013
  26. Three cytosolic NAD-malate dehydrogenase isoforms of Arabidopsis thaliana : on the crossroad between energy fluxes and redox signaling vol.477, pp.19, 2018, https://doi.org/10.1042/bcj20200240
  27. Oxoglutarate Carrier Inhibition Reduced Melanoma Growth and Invasion by Reducing ATP Production vol.12, pp.11, 2018, https://doi.org/10.3390/pharmaceutics12111128
  28. Synthesis and analysis of silver-copper alloy nanoparticles of different ratios manifest anticancer activity in breast cancer cells vol.11, pp.1, 2018, https://doi.org/10.1186/s12645-020-00069-1
  29. Inhibition of glutaminase to reverse fibrosis in iatrogenic laryngotracheal stenosis vol.130, pp.12, 2020, https://doi.org/10.1002/lary.28493
  30. Finding distinctions between oral cancer and periodontitis using saliva metabolites and machine learning vol.27, pp.3, 2018, https://doi.org/10.1111/odi.13591
  31. Tumor pyruvate kinase M2 modulators: a comprehensive account of activators and inhibitors as anticancer agents vol.12, pp.7, 2018, https://doi.org/10.1039/d1md00045d
  32. Calcium Peroxide-Based Nanosystem with Cancer Microenvironment-Activated Capabilities for Imaging Guided Combination Therapy via Mitochondrial Ca2+ Overload and Chemotherapy vol.13, pp.37, 2018, https://doi.org/10.1021/acsami.1c13304
  33. Integration of Transcriptomics and Metabolomics to Reveal the Molecular Mechanisms Underlying Rhodium Nanoparticles-Based Photodynamic Cancer Therapy vol.13, pp.10, 2018, https://doi.org/10.3390/pharmaceutics13101629
  34. Role of Energy Metabolism in the Progression of Neuroblastoma vol.22, pp.21, 2018, https://doi.org/10.3390/ijms222111421
  35. Nicotinamide adenine dinucleotide and the sirtuins caution: Pro‐cancer functions vol.4, pp.4, 2018, https://doi.org/10.1002/agm2.12184
  36. Identification of the first highly selective inhibitor of human lactate dehydrogenase B vol.11, pp.1, 2018, https://doi.org/10.1038/s41598-021-00820-7
  37. Mitochondrial Transport in Glycolysis and Gluconeogenesis: Achievements and Perspectives vol.22, pp.23, 2018, https://doi.org/10.3390/ijms222312620