Fig. 2. Cyclic voltammograms of PANI/WO3 prepared with different passed charge (Q) (0.5, 1, 1.5, 2, 3 mAh) for PANI deposition (a) at dark and (b) under light irradiation.
Fig. 3. Specific capacitance of PANI/WO3 with different amounts of PANI under dark and light irradiation.
Fig. 4. Cyclic voltammograms of WO3, PANI/FTO (Q = 1 mAh) and PANI/WO3 (Q = 1 mAh) (a) at dark and (b) under light irradiation.
Fig. 5. Discharge/charge curves of WO3 and PANI/WO3 (Q = 1 mAh) electrodes at a current density of 0.35 A g-1 (a) at dark, (b) under light irradiation.
Fig. 6. Cycle performance of WO3 and PANI/WO3 (Q = 1 mAh) electrodes at a current density of 0.35 A g-1 (a) at dark, (b) under light irradiation.
Fig. 1. (a) SEM image of prepared WO3 electrode. (b) X-ray diffraction (XRD) patterns of PANI/WO3 (passed charge (Q) = 1 mAh) and WO3 electrode. Solid circle and open circle indicates WO3 and FTO, respectively.
References
- Zhou, G., Li, F. and Cheng, H.-M., "Progress in Flexible Lithium Batteries and Future Prospects," Energy Environ. Sci., 7, 1307-1338(2014). https://doi.org/10.1039/C3EE43182G
-
Ban, C. M., Wu, Z. C., Gillaspie, D. T., Chen, L., Yan, Y. F., Blackburn, J. L. and Dillon, A. C., "Nanostructured
$Fe_3O_4$ /SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode," Adv. Mater., 22, E145-E149(2010). https://doi.org/10.1002/adma.200904285 - Chen, Z., Zhang, D. Q., Wang, X. L., Jia, X. L., Wei, F., Li, H. X. and Lu, Y. F., "High-Performance Energy-Storage Architectures from Carbon Nanotubes and Nanocrystal Building Blocks," Adv. Mater., 24, 2030-2036(2012). https://doi.org/10.1002/adma.201104238
- Hu, L., Wu, H., Mantia, F. L., Yang, Y. and Cui, Y., "Thin, Flexible Secondary Li-ion Paper Batteries," ACS Nano, 4, 5843-5848(2010). https://doi.org/10.1021/nn1018158
-
Jia, X. L., Yan, C. Z., Chen, Z., Wang, R. R., Zhang, Q., Guo, L., Wei, F. and Lu, Y. F., "Direct Growth of Glexible
$LiMn_2O_4$ /CNT Lithium-Ion Cathodes," Chem. Commun., 47, 9669-9671(2011). https://doi.org/10.1039/c1cc13536h -
Wu, Y., Wei, Y., Wang, J. P., Jiang, K. L. and Fan, S. S., "Conformal
$Fe_3O_4$ Sheath on Aligned Carbon Nanotube Scaffolds as High-Performance Anodes for Lithium Ion Batteries," Nano Lett., 13, 818-823(2013). https://doi.org/10.1021/nl3046409 -
Luo, S., Wang, K., Wang, J., Jiang, K., Li, Q. and Fan, S., "Binder-Free
$LiCoO_2$ /Carbon Nanotube Cathodes for High-Performance Lithium Ion Batteries," Adv. Mater., 24, 2294-2298(2012). https://doi.org/10.1002/adma.201104720 - Li, N., Chen, Z. P., Ren, W. C., Li, F. and Cheng, H. M., "Flexible Graphene-Based Lithium Ion Batteries with Ultrafast Charge and Discharge Rates," Proc. Natl. Acad. Sci. U.S.A., 109, 17360-17365(2012). https://doi.org/10.1073/pnas.1210072109
- Cheng, Y., Lu, S., Zhang, H., Varanasi, C. V. and Liu, J., "Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors," Nano Lett., 12, 4206-4211(2012). https://doi.org/10.1021/nl301804c
- Koo, M., Park, K. I., Lee, S. H., Suh, M., Jeon, D. Y., Choi, J. W., Kang, K. and Lee, K. J., "Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems," Nano Lett., 12, 4810-4816 (2012). https://doi.org/10.1021/nl302254v
- Choi, K.-H., Cho, S.-J., Kim, S.-H., Kwon, Y. H., Kim, J. Y. and Lee, S.-Y., "Thin, Deformable, and Safety-Reinforced Plastic Crystal Polymer Electrolytes for High-Performance Flexible Lithium-Ion Batteries," Adv. Funct. Mater., 24, 44-52(2014). https://doi.org/10.1002/adfm.201301345
-
Lee, S.-H., Deshpande, R., Parilla, P. A., Jones, K. M., To, B., Mahan, A. H. and Dillon, A. C., "Crystalline
$WO_3$ Nanoparticles for Highly Improved Electrochromic Applications," Adv. Mater., 18, 763-766(2006). https://doi.org/10.1002/adma.200501953 -
Li, W.-J. and Fu, Z.-W., "Nanostructured
$WO_3$ Thin Film as a New Anode Material for Lithium-Ion Batteries," Appl. Surf. Sci., 256, 2447-2452(2010). https://doi.org/10.1016/j.apsusc.2009.10.085 -
Zhang, J., Tu, J.-P., Xia, X.-H., Wang, X.-L. and Gu, C.-D., "Hydrothermally Synthesized
$WO_3$ Nanowire Arrays with Highly Improved Electrochromic Performance," J. Mater. Chem., 21, 5492-5498 (2011). https://doi.org/10.1039/c0jm04361c -
Jung, H., Sunwoo, C. and Kim, D.-H., "Preparation of
$WO_3$ Films by CVD and their Application in Electrochromic Devices," Korean Chem. Eng. Res., 49, 405-410(2011). https://doi.org/10.9713/kcer.2011.49.4.405 -
Kalanur, S. S., Hwang, Y. J., Chae, S. Y. and Joo, O. S., "Facile Growth of Aligned
$WO_3$ Nanorods on FTO Substrate for Enhanced Photoanodic Water Oxidation Activity," J. Mater. Chem. A, 1, 3479-3488(2013). https://doi.org/10.1039/c3ta01175e -
Samu, G. F., Pencz, K., Janaky, C. and Rajeshwar, K., "On the Electrochemical Synthesis and Charge Storage Properties of
$WO_3$ /Polyaniline Hybrid Nanostructures," J. Solid State Electrochem., 19, 2741-2751(2015). https://doi.org/10.1007/s10008-015-2820-0 -
Janaky, C., Tacconi, N. R. d., Chanmanee, W. and Rajeshwar, K., "Electrodeposited Polyaniline in a Nanoporous
$WO_3$ Matrix: An Organic/Inorganic Hybrid Exhibiting Both p- and n-Type Photoelectrochemical Activity," J. Phys. Chem. C, 116, 4234-4242 (2012). https://doi.org/10.1021/jp211698j -
Shang, M., Wang, W., Sun, S., Ren, J., Zhou, L. and Zhang, L., "Efficient Visible Light-Induced Photocatalytic Degradation of Contaminant by Spindle-like PANI/
$BiVO_4$ ," J. Phys. Chem. C, 113, 20228-20233(2009). https://doi.org/10.1021/jp9067729 -
Zhang, J., Tu, J.-P., Zhang, D., Qiao, Y.-Q., Xia, X.-H., Wang, X.-L. and Gu, C.-D., "Multicolor Electrochromic Polyaniline-
$WO_3$ Hybrid Thin Films: One-Pot Molecular Assembling Synthesis," J. Mater. Chem., 21, 17316-17324(2011). https://doi.org/10.1039/c1jm13069b - Vonlanthen, D., Lazarev, P., See, K. A., Wudl, F. and Heeger, A. J., "A Stable Polyaniline-Benzoquinone-Hydroquinone Supercapacitor," Adv. Mater., 26, 5095-5100(2014). https://doi.org/10.1002/adma.201400966