Fig. 1. Scheme of redox reaction of (a) Methylene blue and (b) V4+/V5+.
Fig. 2. Cyclic voltammetry results of 0.0015 M methylene blue in different pH supporting electrolytes at scan rate 100 mV·s-1.
Fig. 3. Cyclic voltammetry results of 0.0015 M methylene blue and V4+/V5+ redox reactions at scan rate 100 mV·s-1.
Fig. 4. (a) Charge-discharge graphs, (b) efficiency graphs and (c) discharge capacity and SOC versus cycle number graphs of 0.0015 M methylene blue/0.15 M vanadium RFB single cell tests in 2 M H2SO4 with 1 mA·cm-2 current density at 0~0.8 V cutoff voltage.
Fig. 5. (a) Charge-discharge graphs, (b) efficiency graphs and (c) discharge capacity and SOC versus cycle number graphs of 0.0015 M methylene blue/0.15 M vanadium RFB single cell tests in 2 M HCl with 1 mA·cm-2 current density at 0~0.8 V cut-off voltage.
Fig. 6. (a) Charge-discharge graphs, (b) efficiency graphs and (c) discharge capacity and SOC versus cycle number graphs of 0.1 M methylene blue/0.15 M vanadium RFB single cell tests in 2M H2SO4 with 10 mA·cm-2 current density at 0~0.8 V cut-off voltage.
References
- Noh, C., Moon, S., Chung, Y. and Kwon, Y., "Chelating Functional Group Attached to Carbon Nanotubes Prepared for Performance Enhancement of Vanadium Redox Flow Battery," J. Mater. Chem. A, 5, 21334-21342(2017). https://doi.org/10.1039/C7TA06672D
- Chakrabarti, M. H., Dryfe, R. A. W. and Roberts, E. P. L., "Evaluation of Electrolytes for Redox Flow Battery Applications," Electrochim. Acta, 52, 2189-2195(2007). https://doi.org/10.1016/j.electacta.2006.08.052
- Noh, C., Lee, C. S., Chi, W. S., Chung, Y., Kim, J. H. and Kwon, Y., "Vanadium Redox Flow Battery Using Electrocatalyst Decorated with Nitrogen-Doped Carbon Nanotubes Derived from Metal-Organic Frameworks," J. Electrochem. Soc., 165, A1388-A1399 (2018). https://doi.org/10.1149/2.0621807jes
- Wang, W., Luo, Q., Li, B., Wei, X., Li, L. and Yang, Z., "Recent Progress in Redox Flow Battery Research and Development," Adv. Funct. Mater., 23, 970-986(2013). https://doi.org/10.1002/adfm.201200694
- Lopez-Atalaya, M., Codina, G., Perez, J. R., Vazquez, J. L. and Aldaz, A., "Optimization Studies on a Fe/Cr Redox Flow Battery," J. Power Sources, 39, 147-154(1992). https://doi.org/10.1016/0378-7753(92)80133-V
- Jeon, J. D., Yang, H. S., Shim, J., Kim, H. S. and Yang, J. H., "Dual Function of Quaternary Ammonium in Zn/Br Redox Flow Battery: Capturing the Bromine and Lowering the Charge Transfer Resistance," Electrochim. Acta, 127, 397-402(2014). https://doi.org/10.1016/j.electacta.2014.02.073
- Jung, M., Lee, W., Krishnan, N. N., Kim, S., Gupta, G., Komsiyska, L., Harms, C., Kwon, Y. and Henkensmeier, D., "Porous-Nafion/PBI Composite Membranes and Nafion/PBI Blend Membranes for Vanadium Redox Flow Batteries," Appl. Surf. Sci., 450, 301-311(2018). https://doi.org/10.1016/j.apsusc.2018.04.198
- Noh, C., Jung, M., Henkensmeier, D., Nam, S. W. and Kwon, Y., "Vanadium Redox Flow Batteries Using meta-Polybenzimidazole-Based Membranes of Different Thicknesses, " ACS Appl. Mater. Interfaces, 9, 36799-36809(2017). https://doi.org/10.1021/acsami.7b10598
- Kaneko, H., Nozaki, K., Wada, Y., Aoki, T., Negishi, A. and Kamimoto, M., "Vanadium Redox Reactions and Carbon Electrodes for Vanadium Redox Flow Battery," Electrochim. Acta, 36, 1191-1196(1991). https://doi.org/10.1016/0013-4686(91)85108-J
- Parasuraman, A., Lim, T. M., Menictas, C. and Skyllas-Kazacos, M., "Review of Material Research and Development for Vanadium Redox Flow Battery Applications," Electrochim. Acta, 101, 27-40(2013). https://doi.org/10.1016/j.electacta.2012.09.067
- Lee, W., Jo, C., Youk, S., Shin, H. Y., Lee, J., Chung, Y. and Kwon, Y., "Mesoporous Tungsten Oxynitride as Electrocatalyst for Promoting Redox Reactions of Vanadium Redox Couple and Performance of Vanadium Redox Flow Battery," Appl. Surf. Sci., 429, 187-195(2018). https://doi.org/10.1016/j.apsusc.2017.07.022
- Jung, H. Y., Cho, M. S., Sadhasivam, T., Kim, J. Y., Roh, S. H. and Kwon, Y., "High Ionic Selectivity of Low Permeable Organic Composite Membrane with Amphiphilic Polymer for Vanadium Redox Flow Batteries," Solid State Ion., 324, 69-76(2018). https://doi.org/10.1016/j.ssi.2018.06.009
- Struzynska-Piron, I., Jung, M., Maljusch, A., Conradi, O., Kim, S., Jang, J. H., Jang, Kim, H., Kwon, Y., Nam, S.-W. and Henkensmeier, D., "Imidazole Based Ionenes, Their Blends with PBI-OO and Applicability as Membrane in a Vanadium Redox Flow Battery," Eur. Polym. J., 96, 383-392(2017). https://doi.org/10.1016/j.eurpolymj.2017.09.031
- Jung, H. Y., Jeong, S. and Kwon, Y., "The Effects of Different Thick Sulfonated Poly(ether ether ketone) Membranes on Performance of Vanadium Redox Flow Battery," Electrochem. Soc., 163, A5090-A5096(2016). https://doi.org/10.1149/2.0121601jes
- Yang, B., Hoober-Burkhardt, L., Wang, F., Prakash, G. S. and Narayanan, S. R., "An Inexpensive Aqueous Flow Battery for Large-scale Electrical Energy Storage Based on Water-soluble Organic Redox Couples, " J. Electrochem. Soc., 161, A1371-A1380 (2014). https://doi.org/10.1149/2.1001409jes
- Lin, K., Gomez-Bombarelli, R., Beh, E. S., Tong, L., Chen, Q., Valle, A., Aspuru-Guzik, A., Aziz, M. J. and Gordon, R. G., "A Redox-flow Battery with an Alloxazine-based Organic Electrolyte," Nature Energy, 1, 16102(2016). https://doi.org/10.1038/nenergy.2016.102
- Hu, B., DeBruler, C., Rhodes, Z. and Liu, T. L., "Long-cycling Aqueous Organic Redox Flow Battery (AORFB) Toward Sustainable and Safe Energy Storage," J. American Chem. Soc., 139, 1207-1214(2017). https://doi.org/10.1021/jacs.6b10984
- Christwardana, M., Ji, J., Chung, Y. and Kwon, Y., "Highly Sensitive Glucose Biosensor Using New Glucose Oxidase Based Biocatalyst," Korean J. Chem. Eng., 34, 2916-2921(2017). https://doi.org/10.1007/s11814-017-0224-9
- Beh, E. S., De Porcellinis, D., Gracia, R. L., Xia, K. T., Gordon, R. G. and Aziz, M. J., "A Neutral pH Aqueous Organic-organometallic Redox Flow Battery with Extremely High Capacity Retention," ACS Energy Lett., 2, 639-644(2017). https://doi.org/10.1021/acsenergylett.7b00019
- Christwardana, M., Chung, Y. and Kwon, Y., "A Correlation of Results Measured by Cyclic Voltammogram and Impedance Spectroscopy in Glucose Oxidase Based Biocatalysts," Korean J. Chem. Eng., 34, 3009-3016(2017). https://doi.org/10.1007/s11814-017-0213-z
- Karyakin, A. A., Strakhova, A. K., Karyakina, E. E., Varfolomeyev, S. D. and Yatslmirsky, A. K., "The Electrochemical Polymerization of Methylene Blue and Bioelectrochemical Activity of the Resulting Film," Synth. Met., 60, 289-292(1993). https://doi.org/10.1016/0379-6779(93)91294-C
- Wang, W., Nie, Z., Chen, B., Chen, F., Luo, Q., Wei, X., Xia, G.-G., Skyllas-Kazacos, M., Li, L. and Yang, Z., "A New Fe/V Redox Flow Battery Using a Sulfuric/chloric Mixed-Acid Supporting Electrolyte," Adv. Energy Mater., 2, 487-493(2012). https://doi.org/10.1002/aenm.201100527
Cited by
- Phenothiazine‐Based Organic Catholyte for High‐Capacity and Long‐Life Aqueous Redox Flow Batteries vol.31, pp.24, 2019, https://doi.org/10.1002/adma.201901052
- Porous polybenzimidazole membranes with positive charges enable an excellent anti-fouling ability for vanadium-methylene blue flow battery vol.68, pp.None, 2018, https://doi.org/10.1016/j.jechem.2021.12.011