DOI QR코드

DOI QR Code

Implementation of Smart Home Network System based on CoAP/6LoWPAN in Mobile Environment

모바일 환경에서 CoAP/6LoWPAN 기반의 스마트 홈네트워크 시스템 구현 및 성능 분석

  • Lee, Bo-Kyung (Department of Computer Engineering, Korea Polytechnic University)
  • 이보경 (한국산업기술대학교 컴퓨터공학부)
  • Received : 2018.08.09
  • Accepted : 2018.11.20
  • Published : 2018.11.28

Abstract

As the Internet of Thing(IoT) technology recently has become a big issue, many researches have been carried out to link the Internet of things with the home network system. Various home network systems are being implemented to connect many devices used in the home with the Internet and to control and operate the devices using a smart phone. However, existing protocols that operate on the Internet are not suitable for a limited environment such as low power, low capacity, and low performance. Therefore, the Internet Engineering Task Force (IETF) Working Group proposed the CoAP/6LoWPAN technology as a suitable protocol for internetworking IoT devices with the Internet in a limited environment and adopting it as a standard. In this paper, a smart home network system is implemented to control and operate various IoT devices in a home using CoAP/6LoWPAN in mobile environment. The performance of HTTP and CoAP such as data transmission time, data transmission rate is analyzed.

사물인터넷(Internet of Thing) 기술이 커다란 이슈로 떠오르면서 홈 네트워크 시스템을 사물인터넷 기술 과 연동하기 위한 연구들이 많이 진행되고 있다. 특히 가정에서 사용되는 많은 기기들을 인터넷과 연결시키고 스마트 폰을 이용하여 기기들을 제어하고 동작시키기 위한 다양한 기술들이 제안되고 있다. 그러나 기존의 인터넷 프로토콜들은 적은 양의 데이터가 송수신되는 사물 인터넷 환경에는 비효율적이다. 그래서 IETF(Internet Engineering Task Force)에서는 저전력, 저용량, 저성능 등 제한된 환경에서 인터넷과 연동하여 사물들을 동작시키기 위한 대표적인 기술로 CoAP/6LoWPAN 프로토콜을 제안하고 있다. 본 논문에서는 CoAP/6LoWPAN을 이용하여 모바일 환경에서 홈네트워크 시스템을 동작시키고 제어하는 시스템을 구현하였으며 이는 향후 각 가정에 도입될 스마트홈네트워크 시스템 구축에 활용할 수 있을 것으로 전망된다. 또한 기존 인터넷 망에서 사용되는 HTTP와의 성능 분석을 수행하여 CoAP/6LoWPAN 프로토콜을 사용한 제안 시스템이 사물인터넷 환경에 적합함을 보여주고 있다.

Keywords

OHHGBW_2018_v9n11_99_f0001.png 이미지

Fig. 1. Integrated System Configuration

OHHGBW_2018_v9n11_99_f0002.png 이미지

Fig. 2. Protocol Stack

OHHGBW_2018_v9n11_99_f0003.png 이미지

Fig. 3. Home Network System

OHHGBW_2018_v9n11_99_f0004.png 이미지

Fig. 4 Action Screen of CoAP Client

OHHGBW_2018_v9n11_99_f0005.png 이미지

Fig. 5 Process of CoAP GET message

OHHGBW_2018_v9n11_99_f0006.png 이미지

Fig. 6. Process of CoAP PUT message

OHHGBW_2018_v9n11_99_f0007.png 이미지

Fig. 7. Transmission Times of CoAP and HTTP

Table 1. Sensor Tag's IPv6 Address of each rooms

OHHGBW_2018_v9n11_99_t0001.png 이미지

Table 2 IPv6 address of Home Network system

OHHGBW_2018_v9n11_99_t0002.png 이미지

Table 3. Communication rules between CoAP server and sensor

OHHGBW_2018_v9n11_99_t0003.png 이미지

References

  1. Z. Shelby, B. Frank, D. Sturek. (2014). Constrained Application Protocol(CoAP). RFC 7252.
  2. M. Kovatsch, S. Duquennoy & A. Dunkels, A Low-power CoAP for Contiki, Mobile Adhoc and Sensor Systems(MASS), 2011 IEEE 8th International Conference, 855-860, Oct. 2011
  3. K. Weok-gap, P.il-kyun,S. Seung-cheol & L. Byeong-tak. (2013). Trends of IETF CoAP Based Sensor Connection Protocol Technology, Electronics and Telecommunications Trends, ETRI, 131-140.
  4. H. J. Mun, G. H. Choi & Y. C. Hwang. (2016). Countermeasure to Underlying Security Threats in IoT communication,Journal of Convergence for Information Technology, Convergence Society for SMB, 6(4), 59-64.
  5. L. Alessandro, M.Pol & Anna Calveras. (2013). TinyCoAP : A Novel Constrained Application Protocol (CoAP) Implementation for Embedding RESTful Web Services in Wireless Sensor Networks Based on TinyOS, Journal of Sensor and Actuator Networks, 288-315.
  6. Varat Chawathaworncharoen, Vasaka Visoottiviseth, Ryousei Takano. (2015). Feasibility Evaluation of 6LoWPAN over Bluetooth Low Energy.
  7. Kushalnagar, et al. (2007). IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals, IETF RFC 4919.
  8. Sebastien Dawans. (2013). Redundant Border Routers for Mission-Critical 6LoWPAN Networks.
  9. Seung-Kyun Park. (2016). Proposal of a mobility management scheme for sensor nodes in IoT(Internet of Things), Journal of Convergence for Information Technology, Convergence Society for SMB, 6(2), 37-44.
  10. Cheol-Min Kim, Hyung-Woo Kang, Sang-Il Choi & Seok-Joo Koh. (2016). "Implementation of CoAP/6LoWPAN over BLE Networks for IoT Services.
  11. J. Nieminen, TeliaSonera, T. Savolainen, M. Isomaki, Nokia, B. Patil, AT&T, Z. Shelby. (2015). ARM, C. Gomez, IPv6 over BLUETOOTH(R) Low Energy IETF RFC 7668.
  12. Montenegro, et al Transmission of IPv6 Packets over IEEE 802.15.4 Networks, RFC 4944, Sep. 2007
  13. T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.2, IETF RFC 5246, Aug. 2008
  14. E. Rescorla,RTFM, Inc., N. Modadugu, Google, Inc., Datagram Transport Layer Security Version 1.2, IETF RFC 6347, Jan. 2012
  15. Reem Abdul Rahman, Babar Shah, . (2016). Security analysis of IoT protocols: A focus in CoAP, proceedings of 2016 3rd MEC International Conference on Big Data and Smart City.