DOI QR코드

DOI QR Code

International Case Studies on the Eco-friendly Energy Towns with Hybrid Thermal Energy Supply System and Borehole Thermal Energy Storage (BTES)

친환경에너지타운에서 보어홀지중열 저장(BTES) 활용 융복합 열에너지 공급 시스템 사례 연구

  • 심병완 (한국지질자원연구원, 지질환경연구본부)
  • Received : 2017.12.11
  • Accepted : 2018.02.28
  • Published : 2018.02.28

Abstract

This study reviews three eco-friendly energy towns with hybrid thermal energy supply systems and borehole thermal energy storage (BTES) in Canada and Denmark. The district heating and cooling systems were designed by using multi-source energy for the higher efficiency and reliability as well as environment. ADEU (Alexandra District Energy Utility) located at the developing area in the city of Richmond, Canada was designed to supply district energy with the installation of 726 borehole heat exchangers (BHEs) and a backup boiler using natural gas. DLSC (Drake Landing Solar Community) located in the town of Okotoks, Canada is a district system to store solar thermal energy underground during the summer season by seasonal BTES with 144 BHEs. Brædstrup Solpark district heating system located in Denmark has been conducted energy supply from multiple energy sources of solar thermal, heat pump, boiler plants and seasonal BTES with 48 BHEs. These systems are designed based on social and economic benefits as well as nature-friendly living space according to the city based energy perspective. Each system has the energy center which distribute the stored thermal energy to each house for heating during the winter season. The BHE depth and ground thermal storage volume are designed by the heating and cooling load as well as the condition of ground water flow and thermophysical properties of the ground. These systems have been proved the reliance and economic benefits by providing consistent energy supply with competitive energy price for many years. In addition, the several expansions of the service area in ADEU and Brædstrup Solpark have been processed based on energy supply master plan. In order to implement this kind of project in our country, the regulation and policy support of government or related federal organization are required. As well as the government have to make a energy management agency associated with long-term supply energy plan.

본 연구는 해외 친환경에너지타운에서 보어홀 지중열 저장(BTES) 기술을 활용한 융복합 열에너지 공급 시스템의 3가지 사례로서 캐나다의 ADEU(Alexandra District Energy Utility) 및 DLSC(Drake Landing Solar Community)와 덴마크의 Brædstrup Solpark를 조사하였다. 이들 지역 냉난방 시스템들은 효율과 지속가능성을 높이기 위하여 다중 에너지원을 활용하고 있다. ADEU는 리치몬드시에서 726 개의 지중열교환기로 이루어진 지열필드 및 천연 가스 백업 보일러를 이용한 대규모 지역에너지 공급을 위해 개발되었다. 그리고 캘거리시 인근 Okotoks에 위치한 DLSC는 여름철에 풍부한 태양열 에너지를 144 개의 지중열교환기를 통하여 지중에 저장하고 겨울철 난방을 위해 각 주택에 열에너지를 분배하는 계간축열 방식의 지역난방 시스템이다. Brædstrup Solpark 지역난방 시스템은 태양열, 히트 펌프, 보일러 플랜트 및 계간축열을 위한 48 개의 지중열교환기로 구성되며 다중 에너지원을 이용하여 열을 저장한다. BTES 시추공의 심도와 축열량은 지하수 유동과 지반의 열물성에 따라 영향을 많이 받는다. 이러한 시스템들은 경쟁력 있는 에너지 가격으로 장기적인 에너지를 공급함으로서 신뢰성과 경제성을 평가 받았다. 그리고 ADEU와 Brædstrup Solpark는 서비스 영역 확장을 위한 장기 에너지 공급 계획을 기반으로 확장이 진행중이다. 본 조사를 통하여 이러한 시스템들은 사회 경제적인 이익 뿐만아니라 환경적인 관점이 설계에 반영되어 있는 것을 알 수 있었다. 국내에서도 이러한 프로젝트를 실시하기 위해서는 지방 정부 또는 관련 기관의 에너지 정책 지원 뿐만아니라, 관리 기관 설치를 통한 장기적인 협력이 필요하다.

Keywords

Acknowledgement

Grant : 기후변화대응 지하수/지열 자원 확보 및 생태보전 융합기술(Terra-4G) 개발

Supported by : 한국지질자원연구원

References

  1. Braedstrup Fjernvarme (2017) Braedstrup District Heating, http://www.braedstrup-fjernvarme.dk.
  2. Catolico, N., Ge, S. and McCartney, J. S. (2016). Numerical modeling of a soil-borehole thermal energy storage system. Vadose Zone J., v15, p.1-17.
  3. Chang, Y.B, Lee, J.P. and Cho, B.Y. (2014) Designing New Policy Approaches to Facilitate Energy Transitions in Local Communities in Korea, STEPI report 2014-03.
  4. City of Richmond (2010) Alexandra District Energy Utility Bylaw No. 8641, 35p.
  5. City of Richmond (2014) Technical report 10-6600-10-02/2014-Vol 01 (Alexandra District Energy Utility Expansion Phase 3).
  6. City of Richmond (2016) Alexandra District Energy Utility - A Guide for Connection to District Energy.
  7. City of Richmond (2017) Energy Action in Richmond - Community Energy and Emissions Plan.
  8. Ferguson, G. (2015) Screening for heat transport by groundwater in closed geothermal systems. Groundwater, v53, p.503-506. https://doi.org/10.1111/gwat.12162
  9. Flynn, C. and Siren, K. (2015) Influence of location and design on the performance of a solar district heating system equipped with borehole seasonal storage. Renewable Energy, v81, p.377-388. https://doi.org/10.1016/j.renene.2015.03.036
  10. Gehlin S. (2016) Advances in Ground-Source Heat Pump Systems (Rees, Simon, ed.) - Borehole thermal energy storage. Woodhead Publishing, p460.
  11. KIER (2014) Development of the Environment-friendly Zero Energy Town based on the Renewable Energy, KIER-B42426, 252p.
  12. KIER (2015) Master-plan for demonstration construction of the eco-friendly energy town and a basic design of optimized hybrid new and renewable energy system, 202p.
  13. Kim, Y., Lee, J.S., Jeon, S.W. (2016) Advances in Ground-Source Heat Pump Systems (Rees, Simon, ed.) - Hybrid ground-source heat pump systems. Woodhead Publishing, p.460.
  14. Leidos (2014) Drake Landing Solar Community Energy Report, Annual Performance Monitoring Report for 2013-2014, 40p.
  15. L'Ecuyer, M., Zoi, C. and Hoffman, J.S. (1993) Space conditioning: the next frontier: the potential of advanced residential space conditioning technologies for reducing pollution and saving consumers money. Office of Air and Radiation, US Environmental Protection Agency.
  16. LuluIsland Co., How the ADEU works (2016) http://www.luluislandenergy.ca/wp-content/uploads/2016/12/2016_How-the-ADEU-Works_Infographic.pdf.
  17. ME (Ministry of Environment) (2017) Press releases: Selection of Five new eco-friendly energy towns (April 24, 2017).
  18. MOTIE (Ministry of Trade, Industry and Energy) (2014) 4th National Basic Plan for New and Renewable Energies(2014-2035).
  19. Nam, Y.J. and Gao, X.Y. (2014) Study on the performance prediction simulation of the heat pump system using solar and geothermal heat source. Journal of the Korean Solar Energy Society, v.34, p.75-81.
  20. Oh, J.H. and Nam, Y. (2015) Study on the effect of ground heat storage by solar heat using numerical simulation. Energies, v8, p.13609-13627. https://doi.org/10.3390/en81212388
  21. Pavlov, G.K. and Olesen, B.W. (2011) Seasonal ground solar thermal energy storage-review of systems and applications. In ISES Solar World Congress 2011.
  22. Pinel, P., Cruickshank, C.A., Beausoleil-Morrison, I. and Wills, A. (2011) A review of available methods for seasonal storage of solar thermal energy in residential applications. Renewable and Sustainable Energy Reviews, v.15, p.3341-3359. https://doi.org/10.1016/j.rser.2011.04.013
  23. PlanEnergi (2013) Boreholes in Braaedstrup, Final report, 73p.
  24. Qi, Z., Gao, Q., Liu, Y., Yan, Y.Y. and Spitler, J.D. (2014) Status and development of hybrid energy systems from hybrid ground source heat pump in China and other countries. Renewable and Sustainable Energy Reviews, v.29, p.37-51. https://doi.org/10.1016/j.rser.2013.08.059
  25. Rad, F.M., Fung, A.S. and Leong, W.H. (2013) Feasibility of combined solar thermal and ground source heat pump systems in cold climate, Canada. Energy and Buildings, v.61, p.224-232. https://doi.org/10.1016/j.enbuild.2013.02.036
  26. Reedman, A.J.R. and Om, S.H. (1975) The geology of Korea. Korea Institute of Energy and Resources, 1975.
  27. Rhee, S., Yoon, S., Park, H., Jeon, J. and Choi, A. Development plan to apply renewable energy for rural villages, Journal of Agricultural Science, 38, 2, p.349-360.
  28. Ruffen, T. (2014) The Future Begins Here - Richmonds' first district energy utility, Innovation, November/December, p.20-22.
  29. Schmidt, T. (2016) Monitoring results from large-scale solar thermal plants with long term storage, Marstal, Braedstrup and Dronninglund, Denmark, http://www.solarthermalworld.org/sites/gstec/files/news/file/2016-10-03/schmidt_solites.pdf.
  30. Sibbitt, B., McClenahan, D., Djebbar, R., Thornton, J., Wong, B., Carriere, J. and Kokko, J. (2012) The performance of a high solar fraction seasonal storage district heating system-five years of operation. Energy Procedia, v.30, p.856-865. https://doi.org/10.1016/j.egypro.2012.11.097
  31. Sibbet, B. and McClenahan, D. (2015) Seasonal Borehole Thermal Energy Storage-Guidelines for Design and Construction. Natural Resources: Hvalsoe, Denmark.
  32. Sibbitt, B., McClenahan, D., Djebbar, R. and Paget K. (2015) Drake Landing Solar Community: Groundbreaking Solar. High Performing Buildings, p.36-46.
  33. Sorensen, P.A., Larsen, J., Thogersen, L., Dannemand Andersen, J., Ostergaard, C. and Schmidt, T. (2013) Boreholes in Braedstrup. Final report, 149p.
  34. Tordrup, K.W., Poulsen, S.E. and Bjorn, H. (2017) An improved method for upscaling borehole thermal energy storage using inverse finite element modelling. Renewable Energy, v.105, p.13-21. https://doi.org/10.1016/j.renene.2016.12.011
  35. Wang, G.I. and No, K.S. (2014) A Study on the Best Practices and Policy Agenda for Environment-Friendly Energy Towns, KRIHS, ISBN 979-11-85948-64-4, p.131.
  36. Wamboldt, J. (2009) Central solar heating plants with seasonal storage for residential applications in Canada: A case study of the Drake Landing Solar Community(Doctoral dissertation).
  37. Zaidi, K.R. (2009) Solar Energy Policy in Canada: An Overview of Recent Legislative and Community-Based Trends Toward a Coherent Renewable Energy Sustainability Framework. Mo. Envtl. L. and Pol'y Rev., v.17, 108p.