• Title/Summary/Keyword: hybrid thermal energy supply

Search Result 21, Processing Time 0.329 seconds

Thermal Performance Analysis of Renewable Hybrid heat Supply System for Zero Carbon Green Home of Apartment (공동주택의 제로카본 그린홈을 위한 신재생에너지 하이브리드 열공급 시스템의 열성능 분석)

  • Joo, Hong-Jin;Lee, Kyoung-Ho;Kwak, Hee-Youl
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.451-456
    • /
    • 2012
  • This study was carried out to evaluate thermal performance of the renewable hybrid heat supply system with solar thermal system and wood pellet boiler for Zero Carbon Green home of apartment houses. The hybrid heat supply system was set up at Korea Institute Energy Research in 2011. The system was comprised of the wood pellet boiler unit with heat capacity designed as 20,000 kacal/hr, a evacuated tubular solar collector 3.74 $m^2$ of aperture area at the $20^{\circ}$ install angle, a 0.3 $m^3$ hot water storage tank, a 0.15 $m^3$ hot water storage tank for space heating. Thermal performance tests for one-house of apartment house were carried out by hot water load and heating load in winter season through the hybrid heat supply system. As a result, hot water energy supplied by the hybrid heat supply system was 11kWh in a day. Solar thermal energy portion was 2.99kWh which is 27% of the total hot water energy supply. wood pellet boiler supply portion was 8.017kWh which is 73% of the total hot water energy supply.

  • PDF

Thermal Performance Analysis of Hybrid heat Supply System for Zero Carbon Green Home (제로카본 그린홈 구현을 위한 하이브리드 열공급 시스템의 열성능 분석)

  • Joo, Hong-Jin;Lee, Kyoung-Ho;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.53-59
    • /
    • 2012
  • This study was carried out to evaluate thermal performance of the renewable hybrid heat supply system with solar thermal system and wood pellet boiler for Zero Carbon Green home of apartment houses. The hybrid heat supply system was set up at Korea Institute Energy Research in 2011. The system was comprised of the wood pellet boiler unit with heat capacity designed as 20,000kcal/hr, a $0.15m^3$ hot water storage tank for space heating, a evacuated tubular solar collector $3.74m^2$ of aperture area at the $20^{\circ}$ install angle, a $0.3m^3$ hot water storage tank. Thermal performance tests for one-house of apartment house were carried out by hot water load and heating load in winter season through the hybrid heat supply system. As a result, hot water energy supplied by the hybrid heat supply system was 11kWh in a day. Solar thermal energy portion was 2.99kWh which is 27% of the total hot water energy supply. wood pellet boiler supply portion was 8.017kWh which is 73% of the total hot water energy supply.

The Development and Performance Analysis of Compact Type Solar Thermal/Ground Coupled Heat Pump Hybrid System for Heating, Cooling and Hot water (콤팩트형 태양열/지열히트펌프 하이브리드 냉난방 및 급탕 시스템 개발 및 성능분석)

  • Baek, Nam-Choon;Jeong, Seon-Yeong;Yoon, Eung-Sang;Lee, Kyoung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.59-67
    • /
    • 2012
  • In this study,the compact type solar thermal and ground coupled heat pump hybrid system for space heating/cooling and hot water supply has been developed. This hybrid system was installed in Zero Energy Solar House(ZeSH) in KIER for the demonstration. The thermal performance and operational characteristics of this hybrid system were analysed especially. The results are as follows. (1) This hybrid system was designed in order to address the existing disadvantages of solar thermal/ground coupled heat pump system. For this design, all parts except solar collector and ground coupled heat pump were integrated into a single product in a factory. The compact type unit includes two buffer tanks, an expansion tank, pumps, valves, a controller, etc. This system has an advantage of easy installation with simple plumbing work even in narrow space. (2) The thermal charging and discharging time of the buffer tanks and its characteristics by ground coupled heat pump, and heat pump COP according to geo-source temperature and buffer storage temperature have been studied. This system was found to meet well to the heat load without any other auxiliary heating equipment. (3) The operating hours of the ground coupled heat pump as a backup device of solar thermal can be reduced significantly by using solar heat. It was also found that the minimum heating water supply setting temperature and maximum cooling water supply setting temperature make an influence on the heat pump COP. The lower heating water and the higher cooling water temperature, the higher COP. In this respect, the hybrid system's performance can be improved in ZeSH than conventional house.

Study on the Operation of the Solar Heating System with Ground Source Heat Pump as a Back-up Device (지열히트펌프 보조열원식 태양열 난방급탕 시스템 작동에 관한 연구)

  • Kim, Hwidong;Baek, Namchoon;Lee, Jinkook;Shin, Uchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.197.2-197.2
    • /
    • 2010
  • The study on the operation characteristics of solar space and water heating system with ground source heat pump (GSHP) as a back-up device was carried out. This system, called solar thermal and geothermal hybrid system (ST/G), was installed at Zero Energy Solar House II (KIER ZeSH-II) in Korea Institute of Energy Research. This ST/G hybrid system was developed to supply all thermal load in a house by renewable energy. The purpose of this study is to find out that this system is optimized and operated normally for the heating load of ZeSH-II. Experiment was continued for seven months, from October to April. The analysis was conducted as followings ; - the contribution of solar thermal system. - the appropriateness of GSHP as a back-up device. - the performance of solar thermal and ground source heat pump system respectively. - the adaptation of thermal peak load - the operation characteristics of hybrid system under different weather conditions. Finally the complementary measures for the system simplification was referred for the commercialization of this hybrid system.

  • PDF

International Case Studies on the Eco-friendly Energy Towns with Hybrid Thermal Energy Supply System and Borehole Thermal Energy Storage (BTES) (친환경에너지타운에서 보어홀지중열 저장(BTES) 활용 융복합 열에너지 공급 시스템 사례 연구)

  • Shim, Byoung Ohan
    • Economic and Environmental Geology
    • /
    • v.51 no.1
    • /
    • pp.67-76
    • /
    • 2018
  • This study reviews three eco-friendly energy towns with hybrid thermal energy supply systems and borehole thermal energy storage (BTES) in Canada and Denmark. The district heating and cooling systems were designed by using multi-source energy for the higher efficiency and reliability as well as environment. ADEU (Alexandra District Energy Utility) located at the developing area in the city of Richmond, Canada was designed to supply district energy with the installation of 726 borehole heat exchangers (BHEs) and a backup boiler using natural gas. DLSC (Drake Landing Solar Community) located in the town of Okotoks, Canada is a district system to store solar thermal energy underground during the summer season by seasonal BTES with 144 BHEs. Brædstrup Solpark district heating system located in Denmark has been conducted energy supply from multiple energy sources of solar thermal, heat pump, boiler plants and seasonal BTES with 48 BHEs. These systems are designed based on social and economic benefits as well as nature-friendly living space according to the city based energy perspective. Each system has the energy center which distribute the stored thermal energy to each house for heating during the winter season. The BHE depth and ground thermal storage volume are designed by the heating and cooling load as well as the condition of ground water flow and thermophysical properties of the ground. These systems have been proved the reliance and economic benefits by providing consistent energy supply with competitive energy price for many years. In addition, the several expansions of the service area in ADEU and Brædstrup Solpark have been processed based on energy supply master plan. In order to implement this kind of project in our country, the regulation and policy support of government or related federal organization are required. As well as the government have to make a energy management agency associated with long-term supply energy plan.

Solar power and desalination plant for copper industry: improvised techniques

  • Sankar, D.;Deepa, N.;Rajagopal, S.;Karthik, K.M.
    • Advances in Energy Research
    • /
    • v.3 no.1
    • /
    • pp.59-70
    • /
    • 2015
  • In India, continuous production of electricity and sweet/potable water from Solar power and desalination plant plays a major role in the industries. Particularly in Copper industry, Solar power adopts Solar field collector combined with thermal storage system and steam Boiler, Turbine & Generator (BTG) for electricity production and desalination plant adopts Reverse osmosis (RO) for sweet/potable water production which cannot be used for long hours of power generation and consistency of energy supply for industrial processes and power generation cannot be ensured. This paper presents an overview of enhanced technology for Solar power and Desalination plant for Copper industry making it continuous production of electricity and sweet/potable water. The conventional technology can be replaced with this proposed technique in the existing and upcoming industries.

Experimental Study for Thermal Performance of Hybrid Air-Water Heater Using Solar Energy during Heating Medium Working Simultaneously (복합형 태양열 가열기 열매체 동시운전시의 열적 성능에 관한 실험적 연구)

  • Choi, Kwang-Hwan;Yoon, Jung-In;Son, Chang-Hyo;Choi, Hwi-Ung;Kim, Bu-Ahn
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.115-121
    • /
    • 2014
  • With increment on interesting about improving renewable energy efficiency, many research have been conducted and the research about hybrid air-water heater using solar energy that can make heating air and hot water has been conducted also. In this experiment, the temperature difference and thermal efficiency were investigated when two heating medium(air and liquid) was working simultaneously. As a result, thermal efficiency showed 44% to 88% when these heating medium was working simultaneously depending on operation condition and it is better than traditional solar collector. Also possibility of application into building equipment also was confirmed based on temperature and thermal efficiency. But necessity of additional studies about proper operation condition according to purpose of use and heat load was confirmed because change of thermal efficiency by air velocity and flux of liquid was shown a huge difference.

A Study on Thermal Storage Performance and Characteristics of Daily Operation of a Hybrid Solar Air-Water Heater (복합형 태양열 가열기의 일일 운전 특성 및 축열 성능에 관한 연구)

  • Choi, Hwi-Ung;Rokhman, Fatkhur;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.73-79
    • /
    • 2015
  • In this study, a thermal storage performance and characteristics of daily operation were investigated when the air and the liquid were heated simultaneously by a hybrid solar air-water heater that can make hot water as well as heated air. The hybrid solar air-water heater is kind of a flat plate solar collector that can make hot water and heated air by installing air channel beneath absorber plate of traditional flat plate solar collector for hot water. As a result of daily operation, maximum water temperature reached in a thermal storage was shown $44^{\circ}C$ on 73kg/h of air mass flow rate and about $40^{\circ}C$ on 176kg/h of air mass flow rate. Thus, the necessity of heating water in thermal storage by operating only liquid side was confirmed when the temperature of liquid in thermal storage is lower than we need. In case of efficiency investigated on daily operation, the thermal efficiency of the liquid side was decreased with increment of the inlet liquid temperature and decrement of the solar radiation, but efficiency of the air side was increased with increment of inlet liquid temperature difference as the traditional solar air heater. Total thermal efficiency of the collector was shown from 65.85% to 78.23% and it was decreased with increment of the inlet liquid temperature and decrement of solar radiation same as the traditional system.

Performance Evaluation of Hybrid Solar Air-Water Heater when the Heated Air is used as Inlet Air during Air and Water is Heated Simultaneously (가열 공기 유입에 따른 복합형 태양열 가열기 공기-물 제조 성능에 관한 연구)

  • Choi, Hwi-Ung;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.21-29
    • /
    • 2015
  • In this study, the performance of hybrid solar air-water heater when the heated air was used as inlet air was investigated during air and liquid were heated simultaneously. Temperature difference between inlet air and ambient was set as $0^{\circ}C$, $13^{\circ}C$ and $22^{\circ}C$ and it was maintained during the daily operation. As a result, thermal efficiency of liquid heating was increased when the inlet air temperature was increased and heat gain of the water in heat storage tank was also increased with increment of temperature difference between inlet air and ambient temperature. On the contrary to this, the decrement of air heating efficiency and total efficiency of collector was confirmed with increment of inlet air temperature and it is considered that heat gain of liquid side is lower than heat loss of air side that occurring by using heated air as inlet air of collector. So, from these results, maximum temperature that the liquid in heat storage tank can reach was expected to increase if the return air or any heated air was used as inlet air. But air and total efficiency of hybrid solar air-water is decreased, so using outdoor air as inlet air is considered as better way on perspective of using of solar thermal energy by hybrid solar collector. However, it is hard to conclude that using outdoor air is better than heated air on the perspective of energy saving of building because the performance of heat storage performance was increased even air and total thermal efficiency was decreased, so the necessity of more profound consideration about these result in further research was confirmed for putting the hybrid solar air-water heater to practical use.

Experimental Study for Estimation of Air Heating Performance and Improvement of Thermal Performance of Hybrid Solar Air-water Heater (태양열 공기-물 가열기의 공기 가열 성능 평가 및 열적 성능 개선을 위한 실험적 연구)

  • Choi, Hwi-Ung;Kim, Young-Bok;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.1
    • /
    • pp.47-57
    • /
    • 2017
  • Solar energy is one of the important renewable energy resources. It can be used for air heating, hot water supply, heat source of desiccant cooling system and so on. And many researches for enhancing efficiency have been conducted because of these various uses of solar thermal energy. This study was performed to investigate the air heating performance of hybrid solar air-water heater that can heat air and liquid respectively or simultaneously and finding method for improving thermal performance of this collector. This collector has both liquid pipe and air channel different with the traditional solar water and air heater. Fins were installed in the air channel for enhancing the air heating performance of collector. Also air inlet & outlet temperature, ambient temperature and solar collector's inner part temperature were confirmed with different air velocity on similar solar irradiance. As a result, temperature of heated air was shown about $43^{\circ}C$ to $60^{\circ}C$ on the $30^{\circ}C$ of ambient temperature and thermal efficiency of solar collector was shown 28% to 73% with respect to air velocity. Also, possibility of improvement of thermal performance of this collector could be ascertained from the heat transfer coefficient calculated from this experiment. Thus, it is considered that the research for finding optimal structure of hybrid solar air-water heater for enhancing thermal performance might be needed to conduct as further study based on the method for improving air heating performance confirmed in this study.