DOI QR코드

DOI QR Code

제주도 지하수질산염 농도의 시·공간적변화 특성: 장기(1993-2015) 모니터링 자료의 평가

Spatial-temporal Variations of Nitrate Levels in Groundwater of Jeju Island, Korea: Evaluation of Long-term (1993-2015) Monitoring Data

  • 김호림 (고려대학교 KU-KIST 그린스쿨대학원) ;
  • 오준섭 (고려대학교 지구환경과학과) ;
  • 도현권 (고려대학교 지구환경과학과) ;
  • 이경진 (고려대학교 지구환경과학과) ;
  • 현익현 (제주특별자치도 보건환경연구원) ;
  • 오상실 (제주특별자치도 보건환경연구원) ;
  • 감상규 (제주대학교 환경공학과) ;
  • 윤성택 (고려대학교 KU-KIST 그린스쿨대학원)
  • Kim, Ho-Rim (KU-KIST Green School, Korea University) ;
  • Oh, Junseop (Department of Earth and Environmental Sciences, Korea University) ;
  • Do, Hyun-Kwon (Department of Earth and Environmental Sciences, Korea University) ;
  • Lee, Kyung-Jin (Department of Earth and Environmental Sciences, Korea University) ;
  • Hyun, Ik-Hyun (Research Institute of Health & Environment, Jeju Special-Governing Province) ;
  • Oh, Sang-Sil (Research Institute of Health & Environment, Jeju Special-Governing Province) ;
  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University) ;
  • Yun, Seong-Taek (KU-KIST Green School, Korea University)
  • 투고 : 2018.01.22
  • 심사 : 2018.02.27
  • 발행 : 2018.02.28

초록

1993년부터 2015년까지 관측된 제주도 지하수 장기모니터링 관측정(N = 4,835)에서 수집된 지하수 수질자료(N = 21,568)를 기반으로 질산성질소의 시공간적 변동 특성을 평가하였다. 제주도 지하수의 질산성질소 농도의 중앙값은 2.5 mg/L로서 다른 국가나 대륙의 조사 결과에 비해 다소 높거나 유사한 것으로 나타났다. 또한 지하수 용도, 행정구역 및 고도 별로 유의한 차이를 보였다. 특히, 산간 지역에 비해 저지대 해안가에 위치한 농업 및 주거지역에서 농도가 높음을 확인하였다. Mann-Kendall 및 Sen's slope 분석을 활용한 질산성질소 농도의 추세 분석 결과, 하류 저지대에 비해 중산간지역에서의 질산성질소 농도 증가 경향이 뚜렷하였다. 제주도 내 토지 피복의 시계열 변화 특성과 결부지어 보면, 중산간지역의 오염 증가 추세는 농업지역의 확장 등 인위적 활동 증가에 기인한 결과로 판단된다. 반면, 기지정된 지하수자원특별관리구역에서는 전반적으로 질산성질소 농도의 감소 경향이 나타났는데, 이는 지하수 관리 측면에서 수질관리를 위한 적극적인 정책이 유효함을 시사한다. 본 연구에서는 제주도 지하수의 질산성질소 오염관리를 위한 적정 방안을 제안한다.

The spatio-temporal variations of nitrate concentrations in groundwater of Jeju Island were evaluated by an analysis of time series groundwater quality data (N = 21,568) that were collected from regional groundwater monitoring (number of wells = 4,835) for up to 20 years between 1993 and 2015. The median concentration of $NO_3-N$ is 2.5 mg/L, which is slightly higher than those reported from regional surveys in other countries. Nitrate concentrations of groundwater in wells tend to significantly vary according to different water usage (of the well), administrative districts, and topographic elevations: nitrate level is higher in low-lying agricultural and residential areas than those in high mountainous areas. The Mann-Kendall trend test and Sen's slope analysis show that nitrate concentration in mid-mountainous areas tends to increase, possibly due to the expansion of agricultural areas toward highland. On the other hand, nitrate concentrations in the Specially Designated Groundwater Quality Protection Zones show the temporally decreasing trend, which implies the efficiency of groundwater management actions in Jeju. Proper measures for sustainable groundwater quality management are suggested in this study.

키워드

참고문헌

  1. Aiuppa, A., Bellomo, S., Brusca, L., D'Alessandro, W., Federico, C. (2003) Natural and anthropogenic factors affecting groundwater quality of an active volcano (Mt. Etna, Italy). Appl. Geochem., 18, 863-882. doi:10.1016/S0883-2927(02)00182-8.
  2. Burkey, J. (2006) A Non-Parametric Monotonic Trend Test Computing Mann-Kendall Tau, Tau-B, and Sen's Slope Written in Mathworks-MATLAB Using Matrix Rotations. King County, Department of Natural Resources and Parks, Science and Technical Services Section, Seattle, Washington, USA (http://www.mathworks.com/matlabcentral/fileexchange/authors/23983).
  3. Burow, K.R., Nolan, B.T., Rupert, M.G., Dubrovsky, N.M. (2010) Nitrate in groundwater of the United States, 1991-2003. Environ. Sci. Technol., 44, 4988-4997. doi:10.1021/es100546y.
  4. DEFRA (Department for Environment, Food & Rural Affairs, UK) (2009) Protecting Our Water, Soil and Air Protecting Our Water, Soil and Air. Policy, 1-579.
  5. DEFRA (Department for Environment, Food & Rural Affairs, UK) (2013) Guidance on Complying with the Rules for Nitrate Vulnerable Zones in England for 2013 to 2016, no. November 2013.
  6. Edmunds, W.M., Shand, P., Hart, P., Ward, R.S. (2003) The natural (baseline) quality of groundwater: A UK pilot study. Sci. Total Environ., 310, 25-35. doi:10.1016/S0048-9697(02)00620-4.
  7. European Commission (1991) Directive 91/676/EEC. Off. J. Eur. Communities L 375, 1-8.
  8. Giammanco, S., Ottaviani, M., Valenza, M., Veschetti, E., Principio, E., Giammanco, G., Pignato, S. (1998) Major and trace elements geochemistry in the ground waters of a volcanic area: Mount Etna (Sicily, Italy). Water Res., 32, 19-30. doi:10.1016/S0043-1354(97)00198-X
  9. Hirsch, R.M., Slack, J.R. (1984) A Nonparametric Trend Test for Seasonal Data With Serial Dependence. Water Resour. Res., 20, 727-732. doi:10.1029/WR020i006p00727.
  10. Jeju Do (2010) The Report of Jeju Provincial Institute of Health & Environment Research.
  11. Jeju Do (2013) Comprehensive Water Resources Plan in Jeju Island.
  12. Jeju Do (2017) Special Act On The Establishment of Jeju Special Self-Governing Province and The Develoment of Free International City. (https://elaw.klri.re.krkor_service/lawView.do?lang=ENG&hseq=32563&joseq=JO0010000)
  13. Jeju Green Environment Center (2015) A Study on the Occurrence and Characteristics of Functional Vanadium in Groundwater from Volcanic Rocks of Jeju Island. Final Report, 99p.
  14. Jung, H.W., Yun, S.T., Kim, K.H., Oh, S.S., Kang, K.G. (2014) Role of an impermeable layer in controlling groundwater chemistry in a basaltic aquifer beneath an agricultural field, Jeju Island, South Korea. Appl. Geochem. 45, 82-93. doi:10.1016/j.apgeochem.2014.03.008.
  15. Jung, Y.Y., Koh, D.C., Park, W.B., Ha, K. (2016) Evaluation of multiple regression models using spatial variables to predict nitrate concentrations in volcanic aquifers. Hydrol. Process., 30, 663-675. doi:10.1002/hyp.10633.
  16. Kendall, M. G. (1975) Rank Correlation Methods, London Griffin.
  17. Koh, D.C., Chang, H.W., Lee, K.S., Ko, K.S., Kim, Y., Park, W.B. (2005) Hydrogeochemistry and environmental isotopes of ground water in Jeju volcanic island, Korea: implications for nitrate contamination. Hydrol. Process., 19, 2225-2245. doi:10.1002/hyp.5672.
  18. Koh, D.C., Niel Plummer, L., Kip Solomon, D., Busenberg, E., Kim, Y.J., Chang, H.W. (2006) Application of environmental tracers to mixing, evolution, and nitrate contamination of ground water in Jeju Island, Korea. J. Hydrol., 327, 258-275. doi:10.1016/j.jhydrol.2005.11.021.
  19. Koh, D.C., Ko, K.S., Kim, Y., Lee, S.G., Chang, H.W. (2007) Effect of agricultural land use on the chemistry of groundwater from basaltic aquifers, Jeju Island, South Korea. Hydrogeol. J., 15, 727-743. doi:10.1007/s10040-006-0142-0.
  20. Koh, D. C., Chae, G. T., Yoon, Y. Y., Kang, B. R., Koh, G. W., & Park, K. H. (2009). Baseline geochemical characteristics of groundwater in the mountainous area of Jeju Island, South Korea: Implications for degree of mineralization and nitrate contamination. J. Hydrol., 376(1-2), 81-93. https://doi.org/10.1016/j.jhydrol.2009.07.016
  21. Koh, G.W. (1997) Characteristics of the Groundwater and Hydrogeologic Implications of the Seoguipo Formation in Cheju Island. Unpubl. Ph.D. thesis, Pusan National University, Busan, 325 p.
  22. Koh, G.W. (2006) Characteristics of Groundwater in Jeju Island and Management of Water Resources (II) - Hydrological Geology of Jeju Groundwater, Water for future. J. Korea. Water. Resour. Assoc., 39(8), 80-89 (in Korean)
  23. Korea Meterological Association (2011) Climatological Normals of Korea.
  24. Langmuir, D. (1997) Aqueous environmental geochemistry. Up. Saddle River, NJ Prentice Hall, 549p.
  25. Lee, B. J., Moon, S.H., K.H. Park, Koh, D.C., Koh, G.W. (2002) Hydrogeochemical characteristics of the spring waters in Jeju. J. Geol. Soc. Korea, 38, 421-439 (in Korean).
  26. Lee, L., Helsel, D. (2005) Baseline models of trace elements in major aquifers of the United States. Appl. Geochem. 20, 1560-1570. doi:10.1016/j.apgeochem.2005.03.008.
  27. Mann, H.B. (1945) Nonparametric Tests Against Trend. Econometrica, 13, 245. doi:10.2307/1907187.
  28. Nolan, B., Ruddy, B., Hitt, K., Helsel, D. (1997) Risk of nitrate in ground waters of the United States - A national perspective. Environ. Sci. Technol., 31, 2229-2236. https://doi.org/10.1021/es960818d
  29. Reimann, C., Filzmoser, P. (2000) Normal and lognormal data distribution in geochemistry: Death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environ. Geol., 39, 1001-1014. doi:10.1007/s002549900081.
  30. Reimann, C., Filzmoser, P., Garrett, R.G. (2005) Background and threshold: Critical comparison of methods of determination. Sci. Total Environ., 346, 1-16. doi:10.1016/j.scitotenv.2004.11.023.
  31. Ryuh, Y.G. (2017) The Use of Stable O-H Isotope Data to Evaluate Groundwater Recharge in Jeju Island, Korea, Unpubl. Master thesis, Korea University, Seoul, 54 p.
  32. Scheidleder, A, Grath, J., Winkler, G., Stark, U., Koreimann, C., Gmeiner, C., Nixon, S., Casillas, J., Gravesen, P., Leonard, J. (1999) Groundwater quality and quantity in Europe.European Environment Agency.
  33. Sen, P.K. (1968) Estimates of the Regression Coefficient Based on Kendall's Tau. J. Am. Stat. Assoc., 63, 1379-1389. doi:10.1080/01621459.1968.10480934.
  34. Shand, P., Edmunds, W.M., Lawrence, A.R., Smedley, P.L., Burke, S. (2007) The natural (baseline) quality of groundwater in England and Wales. BGS Res. Rep. RR/07/06 72.
  35. Song, Y. C., Koh, Y. G., Yu, J. G. (1999) Estimation of Nitrate Sources in Cheju Island Groundwater using ${\delta}^{15}N$. J. Kor. Soc. Soil Groundwater Environ., 6, 107-110 (in Korean).
  36. Won C.K. (1976) Study of petro-chemistry of volcanic rocks in Jeju Island. J. Geol. Soc. Korea, 12, 207-226.
  37. Won, J.H., Kim, J.W., Koh, G.W., Lee, J.Y. (2005) Evaluation of hydrogeological characteristics in Jeju Island, Korea. Geosci. J., 9, 33-46. doi:10.1007/BF02910552.