DOI QR코드

DOI QR Code

An Adaptive Complementary Sliding-mode Control Strategy of Single-phase Voltage Source Inverters

  • Hou, Bo (School of Mechanical and Precision Instr ument Engineering, Xi'an University of Technology) ;
  • Liu, Junwei (Dept. of Electrical and Electronic Engineering, Shaanxi University of Technology) ;
  • Dong, Fengbin (Dept. of Electrical and Electronic Engineering, Shaanxi University of Technology) ;
  • Mu, Anle (School of Mechanical and Precision Instr ument Engineering, Xi'an University of Technology)
  • Received : 2016.10.23
  • Accepted : 2017.08.23
  • Published : 2018.01.01

Abstract

In order to achieve the high quality output voltage of single-phase voltage source inverters, in this paper an Adaptive Complementary Sliding Mode Control (ACSMC) is proposed. Firstly, the dynamics model of the single-phase inverter with lumped uncertainty including parameter variations and external disturbances is derived. Then, the conventional Sliding Mode Control (SMC) and Complementary Sliding Mode Control (CSMC) are introduced separately. However, when system parameters vary or external disturbance occurs, the controlling performance such as tracking error, response speed et al. always could not satisfy the requirements based on the SMC and CSMC methods. Consequently, an ACSMC is developed. The ACSMC is composed of a CSMC term, a compensating control term and a filter parameters estimator. The compensating control term is applied to compensate for the system uncertainties, the filter parameters estimator is used for on-line LC parameter estimation by the proposed adaptive law. The adaptive law is derived using the Lyapunov theorem to guarantee the closed-loop stability. In order to decrease the control system cost, an inductor current estimator is developed. Finally, the effectiveness of the proposed controller is validated through Matlab/Simulink and experiments on a prototype single-phase inverter test bed with a TMS320LF28335 DSP. The simulation and experimental results show that compared to the conventional SMC and CSMC, the proposed ACSMC control strategy achieves more excellent performance such as fast transient response, small steady-state error, and low total harmonic distortion no matter under load step change, nonlinear load with inductor parameter variation or external disturbance.

Keywords

E1EEFQ_2018_v13n1_168_f0001.png 이미지

Fig. 1. Circuit diagram of single-phase voltage source full-bridge inverter

E1EEFQ_2018_v13n1_168_f0002.png 이미지

Fig. 2. Block diagram of the ACSMC control scheme

E1EEFQ_2018_v13n1_168_f0003.png 이미지

Fig. 3. Single-phase PWM inverter with an LC output filter

E1EEFQ_2018_v13n1_168_f0004.png 이미지

Fig. 4. Nonlinear load circuit with a diode rectifier andresistive-inductive load circuit (Rs =6.2Ω, CL =220μF, R1 =25Ω, R2 =19Ω and Lload =20mH)

E1EEFQ_2018_v13n1_168_f0005.png 이미지

Fig. 5. Simulation and experimental results of the ACSMCscheme under load step change with ?16.67%variations in L: (a) and (b) Simulation. (c) Experi-

E1EEFQ_2018_v13n1_168_f0006.png 이미지

Fig. 6. Simulation and experimental results of the SMCscheme under load step change with ?16.67%variations in L. (a) and (b) Simulation. (c)Experiment. (Ch1: uo(50V/div), Ch2:io (5A/div) andCh3: E(5.0V/div))

E1EEFQ_2018_v13n1_168_f0007.png 이미지

Fig. 7. Simulation and experimental results of the CSMCscheme under load step change with ?16.67%variations in L. (a) and (b) Simulation. (c) and (d)Experiment. (Ch1: uo(50V/div),Ch2:io (5A/div) andCh3:E (5.0V/div))

E1EEFQ_2018_v13n1_168_f0008.png 이미지

Fig. 8. Simulation and experimental results of the ACSMCscheme under nonlinear load with ?16.67% variationsin L. (a) and (b) Simulation. (c) Experiment. (Ch1:

E1EEFQ_2018_v13n1_168_f0009.png 이미지

Fig. 9. Simulation and experimental results of the SMCscheme under nonlinear load with ?16.67% variationsin L. (a) and (b) Simulation. (c) Experiment. (Ch1:uo(50V/div),Ch2:io (5A/div) and Ch3:E (5.0V/div))

E1EEFQ_2018_v13n1_168_f0010.png 이미지

Fig. 10. Simulation and experimental results of the CSMCscheme under nonlinear load with ?16.67%variations in L. (a) and (b) Simulation. (c) Experi-ment. (Ch1: uo(50V/div), Ch2:io (5A/div) and Ch3:E (5.0V/div))

E1EEFQ_2018_v13n1_168_f0011.png 이미지

Fig. 11. Experimental results of the ACSMC, CSMC andSMC scheme under resistor-inductor load with?16.67% variations in L. (Ch1: uo (50V/div), Ch2:io (5A/div) and Ch3: E (5.0V/div))

E1EEFQ_2018_v13n1_168_f0012.png 이미지

Fig. 12. Experimental results of the ACSMC, CSMC andSMC scheme under nonlinear load with 16.67%variations in L. (Ch1: uo (50V/div), Ch2: E (5.0V/

E1EEFQ_2018_v13n1_168_f0013.png 이미지

Fig. 13. Simulation and experimental results of theinductor current estimator under load step change.(a) and (b) Simulation. (c) Experiment. (CH2:reverse of estimated inductor current (5A/div),CH3: inductor current (5A/div))

Table 1. System parameters of the inverter

E1EEFQ_2018_v13n1_168_t0001.png 이미지

Table 2. Control parameters

E1EEFQ_2018_v13n1_168_t0002.png 이미지

Table 3. The simulated and measured THD(%) of output voltage for the resistive load case (RL=20Ω)

E1EEFQ_2018_v13n1_168_t0003.png 이미지

Table 4. The simulated and measured THD(%) of output voltage for the nonlinear load cases

E1EEFQ_2018_v13n1_168_t0004.png 이미지

References

  1. A. Nasiri, "Digital control of three-phase seriesparallel uninterruptible power supply systems," IEEE Trans. Power Electron, vol. 22, no. 4, pp. 1116-1127, Jul. 2007. https://doi.org/10.1109/TPEL.2007.900546
  2. Y. H. Chen and P. T. Cheng, "An inrush current mitigation technique for the line-interactive uninterruptible power supply systems," IEEE Trans. Ind. Appl., vol. 46, no. 4, pp. 1498-1508, May/Jun. 2010. https://doi.org/10.1109/TIA.2010.2049817
  3. K. S. Low and R. Cao, "Model predictive control of parallel-connected inverters for uninterruptible power supplies," IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 2884-2893, Aug. 2008. https://doi.org/10.1109/TIE.2008.918474
  4. T. Kawabata, T. Miyashita, and Y. Yamamoto, "Dead beat control of three phase PWM inverter," IEEE Trans. Power Electron., vol. 5, no. 1, pp. 21-28, Jan. 1990.
  5. C. Hua, "Two-level switching pattern deadbeat DSPcontrolled PWM inverter," IEEE Trans. Power Electron., vol. 10, no. 3, pp. 310-317, May 1995. https://doi.org/10.1109/63.387996
  6. O. Kukrer and H. Komurcugil, "Deadbeat control method for single phase UPS inverters with compensation of computation delay," Proc. IEEE, vol. 146, no. 1, pp. 123-128, Jan. 1999.
  7. K. Zhang, Y. Kang, J. Xiong and J. Chen, "Direct repetitive control of SPWM inverter for UPS purpose," IEEE Trans. Power Electron., vol. 18, no. 3, pp. 784- 792, May 2003. https://doi.org/10.1109/TPEL.2003.810846
  8. Y. Yang, K. Zhou and W. Lu, "Robust repetitive control scheme for three-phase constant-voltageconstant- frequency pulse-width modulated inverters," IET Power Electronics, vol. 5, no. 6, pp. 669-677, July 2012. https://doi.org/10.1049/iet-pel.2011.0259
  9. Ortega, R., Garcera, G., Figueres, E., Caranza, O., Trujillo and C.L., "Design and application of a two degrees of freedom control with a repetitive controller in a single phase inverter," Proc. IEEE ISIE, pp. 1441-1446, 2011.
  10. S. Chen, Y. M. Lai, S. C. Tan and C. K. Tse, "Analysis and design of repetitive controller for harmonic elimination in PWM voltage source inverter systems," IET Power Electron., vol. 1, no. 4, pp. 497- 506, Dec. 2008. https://doi.org/10.1049/iet-pel:20070006
  11. S. Jiang, D. Cao, Y. Li, J. Liu and F. Peng, "Low- THD fast-transient and cost-effective synchronousframe repetitive controller for three-phase UPS inverters," IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2994-3005, Jun. 2012. https://doi.org/10.1109/TPEL.2011.2178266
  12. L. F. Alves Pereira, J. Vieira Flores, G. Bonan, D. Ferreira Coutinho and J. M. Gomes da Silva, "Multiple resonant controllers for uninterruptible power supplies - a systematic robust control design approach," IEEE Trans. Ind. Electron., vol. 61, no. 3, pp. 1528-1538, Mar. 2014. https://doi.org/10.1109/TIE.2013.2259781
  13. G. Escobar, P. Mattevelli, A. M. Stankovic, A. A. Valdez and J. L. Ramos, "An adaptive control for UPS to compensate unbalance and harmonic distortion using a combined capacitor/load current sensing," IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 839-847, Apr. 2007. https://doi.org/10.1109/TIE.2007.891998
  14. T. D. Do, V. Q. Leu, Y. S. Choi, H. H. Choi and J. W. Jung., "An adaptive voltage control strategy of threephase inverter for stand-alone distributed generation systems," IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5660-5672, Dec. 2013. https://doi.org/10.1109/TIE.2012.2230603
  15. D.-E. Kim and D.-C. Lee, "Feedback linearization control of three-phase UPS inverter systems," IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 963-968, Mar. 2010. https://doi.org/10.1109/TIE.2009.2038404
  16. M. Carpita and M. Marchesoni, "Experimental study of a power conditioning system using sliding mode control," IEEE Trans. Power Electron., vol. 11, no. 4, pp. 731-742, Sep. 1996. https://doi.org/10.1109/63.535405
  17. L. Malesani, L. Rosetto, G. Spiazzi, and A. Zuccato, "An ac power supply with sliding-mode control," IEEE Ind. Appl. Mag., vol. 2, no. 5, pp. 32-38, Sep./ Oct. 1996. https://doi.org/10.1109/2943.532152
  18. S. J. Chiang, T. L. Tai and T. S. Lee, "Variable structure control of UPS inverters," Proc. IEEE, vol. 145, no. 6, pp. 559-567, Nov. 1998.
  19. O. Kukrer, H. Komurcugil and A. Doganalp, "A three-level hysteresis function approach to the sliding mode control of single-phase UPS inverters," IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3477-3486, Sep. 2009. https://doi.org/10.1109/TIE.2009.2016512
  20. N. M. Abdel-Rahim and J. E. Quaicoe, "Analysis and design of multiple feedback loop control strategy for single-phase voltage-source UPS inverter," IEEE Trans. Power. Electron., vol. 11, no. 4, pp. 532-541, Jul. 1996. https://doi.org/10.1109/63.506118
  21. M. J. Ryan, E. W. Brumsickle and R. D. Lorenz, "Control topology options for single-phase UPS inverters," IEEE Trans. Ind. Appl., vol. 33, no. 2, pp. 493-501, Mar./Apr. 1997. https://doi.org/10.1109/28.568015
  22. L. Padmavathi and P. A. Janakiraman, "Self-tuned feedforward compensation for harmonic reduction in single-phase low-voltage inverters", IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4753-4762, Oct. 2011. https://doi.org/10.1109/TIE.2011.2109337
  23. H. Komurcugil, "Rotating-sliding-line-based slidingmode control for single-phase UPS inverters," IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3719-3726, Oct. 2012. https://doi.org/10.1109/TIE.2011.2159354
  24. A. Abrishamifar, A. A. Ahmad and M. Mohamadian, "Fixed switching frequency sliding mode control for single-phase unipolar inverters," IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2507-2514, May 2012. https://doi.org/10.1109/TPEL.2011.2175249
  25. O. Kukrer, H. Komurcugil and A. Doganalp, "A three-level hysteresis function approach to the slidingmode control of single-phase UPS inverters," IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3477-3486, Sep. 2009. https://doi.org/10.1109/TIE.2009.2016512
  26. S.-C. Tan, Y. M. Lai, C. K. Tse and M. K. H. Cheung, "Adaptive feedforward and feedback control schemes for sliding mode controlled power converters," IEEE Trans. Power Electron., vol. 21, no. 1, pp. 182-192, Jan. 2006. https://doi.org/10.1109/TPEL.2005.861191
  27. R-J. Wai and C-Y. Lin, "Active low-frequency ripple control for clean-energy power-conditioning mechanism," IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 3780-3792, Nov. 2010. https://doi.org/10.1109/TIE.2010.2040569
  28. R-J. Wai and C-Y Lin, "Dual active low-frequency ripple control for clean-energy power-conditioning mechanism", IEEE Trans. Ind.Electron., vol. 58, no. 11, pp. 5172-5185, Nov. 2011. https://doi.org/10.1109/TIE.2011.2126533
  29. F. J. Chang, E. C. Chang, T. J. Liang and J. F. Chen, "Digital-signal-processor-based DC/AC inverter with integral-compensation terminal sliding-mode control," IET Power Electron., vol. 4, no. 1, pp. 159-167, Jan. 2011. https://doi.org/10.1049/iet-pel.2010.0071
  30. H. M. Chen, J. P. Su and J. C. Renn, "A novel sliding mode control of an electro hydraulic position servo system," IEICE Trans. Fundam. Electron.Commun. Comput. Sci., vol. E85-A, no. 8, pp. 1928-1936, 2002.
  31. J. P. Su and C. C. Wang, "Complementary sliding control of non-linear system," Int. J. Control, vol. 75, no. 5, pp. 360-368, Mar. 2002. https://doi.org/10.1080/00207170110112250
  32. C. Y. Liang and J. P. Su, "A new approach to the design of a fuzzy sliding mode controller," Fuzzy Sets Syst., vol. 139, no. 1, pp. 111-124, Oct. 2003. https://doi.org/10.1016/S0165-0114(02)00480-3
  33. J. W. Wu, K. C. Huang, M. L. Chiang, M. Y. Chen and L. C. Fu, "Modeling and controller design of a precision hybrid scanner for application in large measurement-range atomic force microscopy", IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3704-3712, Jul. 2014. https://doi.org/10.1109/TIE.2013.2279352
  34. F. Lin, P. Chou, C. Chen and Y. Lin, "DSP-based cross-coupled synchronous control for dual linear motors via intelligent complementary sliding mode control," IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1061-1073, Feb. 2012. https://doi.org/10.1109/TIE.2011.2157286
  35. F. Lin, Y. Huang and M. Tsai, "Fault-tolerant control for six-phase PMSM drive system via intelligent complementary sliding-mode control using TSKFNNAMF," IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5747-5762, Dec. 2013. https://doi.org/10.1109/TIE.2013.2238877
  36. J.-J. E. Slotine and W. Li, Applied Nonlinear Control: Prentice-Hall, 1991, p.290-303.
  37. L. Zhang, R. Born, B. Gu, B. Chen, C. Zheng, X. Zhao, et al., "A sensorless implementation of the parabolic current control for single phase standalone inverters," IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3913-3921, May 2016. https://doi.org/10.1109/TPEL.2015.2464292
  38. Jung. J. W., Leu. V. Q., Dang. D. Q., Do.T. D., Mwasilu, F and Choi H. H., "Intelligent voltage control strategy for three-phase UPS inverters with output LC filter," International Journal of Electronics, vol. 102, no. 8, pp. 1267-1288, Sep. 2015. https://doi.org/10.1080/00207217.2014.966781
  39. E.-K. Kim, F. Mwasilu, H. H. Choi and J.-W. Jung, "An observer-based optimal voltage control scheme for three-phase UPS systems," IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2073-2081, Apr. 2015. https://doi.org/10.1109/TIE.2014.2351777