DOI QR코드

DOI QR Code

Chemical Interaction in Downstream Flows of SNG/Air Symmetric Premixed Counterflow Flame

SNG/Air 예혼합 대향류 대칭화염의 후류 유동장에서 화학적 상호작용

  • KANG, YEONSE (Department of Aerospace Engineering, Sunchon National University) ;
  • LEE, KEEMAN (School of Mechanical and Aerospace Engineering, Sunchon National University)
  • 강연세 (순천대학교 우주항공공학과) ;
  • 이기만 (순천대학교 기계.우주항공공학부)
  • Received : 2018.11.05
  • Accepted : 2018.12.30
  • Published : 2018.12.30

Abstract

Experimental and numerical data were compared through a counterflow burner for the characteristic of basic flame about SNG- C11. In order to use the numerical mechanism accurately, the validation was carried out at strain rate ($a_g=30$, $120s^{-1}$) and the UCSD model showed satisfactory results. The effective Lewis number of the extinction boundary, and the behavior of extinction for the symmetric flames of the SNG-C11, could be explained through the trend of $Le_V$, and the flame of the extinction condition was inspected by the major species, key radicals and the chemical reaction paths. The interactions phenomenon in the merged flames has chemical reaction path for producing $HO_2$ were generated at stagnation point. It can be expected the one of major factors in interaction phenomenon.

Keywords

SSONB2_2018_v29n6_668_f0001.png 이미지

Fig. 1. Schematic set-up for counterflow burner

SSONB2_2018_v29n6_668_f0002.png 이미지

Fig. 2. Validation with experimental and numerical extinction boundary in ag=30, 120 s-1 using various mechanism model

SSONB2_2018_v29n6_668_f0003.png 이미지

Fig. 3. Stability map for SNG-C11 in ΩU, CH4lean part

SSONB2_2018_v29n6_668_f0004.png 이미지

Fig. 4. SNG-C11 flame extinction behavior with lean symmetric case, rich symmetric case in ag=30 s-1

SSONB2_2018_v29n6_668_f0005.png 이미지

Fig. 5. Extinction behavior with increase strain rate

SSONB2_2018_v29n6_668_f0006.png 이미지

Fig. 6. Heat production of extinction point (upper line: lean-lean - ag=30 s-1, rich-rich - g=30 s-1 / lower line: lean-lean - ag=650 s-1, rich-rich - ag=650 s-1)

SSONB2_2018_v29n6_668_f0007.png 이미지

Fig. 7. Overall production rate for major species (upper line: lean-lean - ag=30 s-1, rich-rich - ag=30 s-1 / lower line: lean-lean - ag=650 s-1, rich-rich - ag=650 s-1)

SSONB2_2018_v29n6_668_f0008.png 이미지

Fig. 8. Overall production rate for key radicals (upper line: lean-lean - ag=30 s-1, rich-rich - ag=30 s-1 / lower line: lean-lean - ag=650 s-1, rich-rich - ag=650 s-1)

SSONB2_2018_v29n6_668_f0009.png 이미지

Fig. 9. Net reaction rate of key chemical reaction paths (upper line: lean-lean - ag=30 s-1, rich-rich - ag=30 s-1 / lower line: lean-lean - ag=650 s-1, rich-rich - ag=650 s-1)

Table 1. Summary of experimental and numerical condition

SSONB2_2018_v29n6_668_t0001.png 이미지

References

  1. J. Sato, "Effect of Lewis Number on Extinction Behavior of Premixed Flames in a Stagnation Flow", Proc. Combust. Inst, Vol. 19, 1982, pp. 1541-1548. https://doi.org/10.1016/S0082-0784(82)80331-7
  2. C. K. Law, "lean Limit Phenomena", NASA Lewis Research Center Combust. Fundamentals Res, 1995, pp. 243-249.
  3. S. H. Sohrab, Z. Y. Ye, and C. K. Law, "Theory of Interactive Combustion of Counterflow Premixed Flames", Combust. Sci .Tech, Vol. 45, No. 1-2, 2007, pp. 27-45.
  4. J. W. Lee, Y. D. Yoo, and Y. S. Yun, "Research and Development&Commercial Deployment Status for Coal Gasification Technology - Mainly from GTC 2010", Journal of Energy Engineering, Vol. 20, 2011, pp. 123-142. https://doi.org/10.5855/ENERGY.2011.20.2.123
  5. K. S. Sim and K. M. Lee, "A Study on Flame Extinction Behavior in Downstream Interaction between SNG/Air Premixed Flames", J. Korean Soc. Combust., Vol. 21, No. 4, 2016, pp. 48-60. https://doi.org/10.15231/JKSC.2016.21.4.048
  6. D. C. Kim and K. M. Lee, "Laminar Burning Velocity Measurement of SNG/Air Flames - A Comparison of Bunsen and Spherical Flame Method -", Trans. of the Korean Hydrogen and New Energy Society, Vol. 27, No. 6, 2016, pp. 737-746. https://doi.org/10.7316/KHNES.2016.27.6.737
  7. J. Park, O. B. Kwon, E. J. Lee, J. H. Yun, and S. I. Keel, "A Study on Chemical Effecta Through Preferential Diffusion of H 2 and H in CH 4-H 2 Counterflow Diffusion Flames", Transactions of the Korean Society of Mechanical Engineers B, Vol. 31, No. 12, 2007, pp. 1009-1016. https://doi.org/10.3795/KSME-B.2007.31.12.1009
  8. R. J. Kee, J. A. MilLer, G. H. Evans, and G. Dixon-Lewis, "A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flame", Proc Combust Inst, Vol. 22, 1988, pp. 1479-94.
  9. A. E. Lutz, R. J. Kee, J. F. Grcar, and F. M. RupLey, "A Fortran program for computing opposed-flow diffusion flames", Sandia National Laboratories Report, 1997, SAND 96- 8243.
  10. T. H. Kim, J. Park, O. Fujita, O. B. Kwon, and J. H. Park, "Downstream interaction betweenstretched premixed syngas- air flames", Fuel, Vol. 104, 2013, pp. 739-748. https://doi.org/10.1016/j.fuel.2012.07.038
  11. Y. Ju, H. Guo, K. Maruta, and F. Liu, "On the Extinction limit and Flammability limit Premixed Flames", Fluid Mech, Vol. 342, 1997, pp. 315-334. https://doi.org/10.1017/S0022112097005636
  12. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr, V. V. Lissianski, and Z. Qin, "GRI-Mech", http://www.me.berkeLey.edu/gri_mech/.
  13. C. W. Zhou, Y. Li, E. O'Connor, K. P. Somers, S. Thion, C. Keesee, O. Mathieu, E. L. Petersen, T. A. DeVerter, M. A. Oehlschlaeger, G. Kukkadapu, C. J. Sung, M. Alrefae, F. KhaLed, A. Farooq, P. Dirrenberger, P. A. Glaude, F. Battin-LecLerc, J. Santner, Y. Ju, T. Held, F. M. Haas, F. L. Dryer, and H. J. Curran, "A Comprehensive experimental and modeling study of isobutene oxidation", Combust. Flame, Vol. 167, 2016, pp. 353-379. https://doi.org/10.1016/j.combustflame.2016.01.021
  14. "Chemical-Kinetic Mechanisms for Combustion Applications", Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego, http://combustion.ucsd.edu/, 2014.
  15. J. S. Kim, J. Park, D. S. Bae, T. M. Vu, J. S. Ha, and T. K. Kim, "A study on methane-air premixed flames interacting with syngas-air premixed flames", Int. J. Hydrogen Energy, Vol. 35, 2010, pp. 1390-1400. https://doi.org/10.1016/j.ijhydene.2009.11.078
  16. J. S. Ha, C. W. Moon, J. Park, J. S. Kim, J. H. Yun, and S. I. Keel, "A Study on flame interaction between methane-air and nitrogen-diluted hydrogen-air premixed flames", Int. J. Hydrogen Energy, Vol. 35, 2010, pp. 6992-7001. https://doi.org/10.1016/j.ijhydene.2010.04.104
  17. S. H. Chung, J. S. Kim, and C. K. Law, "Extinction of Interacting Premixed Flames : Theory and Experimental Comparisons", Twenty-First Symposium on Combustion, The Combustion Institute, 1986, pp. 1845-1851.
  18. K. S. Sim and K. M. Lee, "Downstream Interaction between SNG/Air Premixed Flames", Fuel, Vol. 210, 2017, pp. 545-556. https://doi.org/10.1016/j.fuel.2017.09.013
  19. C. K. Law, "Combustion Physics", Cambridge University Press, UK, 2010, pp. 398-472.
  20. N. Bouvet, F. Halter, C. Chauveau, and Y. Yoon, "On the effective Lewis number formulations for Lean hydrogen/ hydrocarbon/air mixtures", Hydrogen Energy, Vol. 38, 2018, pp. 5949-5960.
  21. W. E. Wilson Jr and R. M. Fristrom, "Radical in Flames", APL Technical Digest, 1963, pp. 2-7.
  22. Y. J. Kim, T. H. Kim, J. Park, O. B. Kwon, S. I. Keel, and J. H. Yun, "Preferenti.al diffusion effects in downstream interactions between premixed H2-air and CO-air flames", Fuel, Vol. 116, 2014, pp. 550-559. https://doi.org/10.1016/j.fuel.2013.08.055
  23. M. Blocquet, C. Schoemaecker, D. Amedro, O. Herbiner, F. B. LecLerc, and C. Fittschen, "Quantification of OH and HO2 radicals during the low-temperature oxidation of hydrocarbons by Fluorescence Assay by Gas Expansion technique", PNAS, Vol. 110, No. 50, 2013, pp. 20014-20017. https://doi.org/10.1073/pnas.1314968110
  24. C. K. Westbrook and F. L Dryer, "Chemical kinetic modeling of hydrocarbon combustion", Prog. Energy Combust. Sci., Vol. 10, 1984, pp. 1-57. https://doi.org/10.1016/0360-1285(84)90118-7