DOI QR코드

DOI QR Code

Online Signature Verification Method using General Handwriting Data and 1-class SVM

일반 필기 데이터와 단일 클래스 SVM을 이용한 온라인 서명 검증 기법

  • Choi, Hun (School of Electrical, Electronic & Communication Engineering, Dong-eui University) ;
  • Heo, Gyeongyong (School of Electrical, Electronic & Communication Engineering, Dong-eui University)
  • Received : 2018.07.18
  • Accepted : 2018.08.07
  • Published : 2018.11.30

Abstract

Online signature verification is one of the simple and efficient methods of identity verification and has less resistance than other biometric technologies. To handle signature verification as a classification problem, it is necessary to gather forgery signatures, which is not easy in most practical applications. It is not easy to obtain a large number of genuine signatures either. In this paper, one class SVM is used to tackle the forgery signature problem and someone else's signatures are used as general handwriting data to solve the genuine signature problem. Someone else's signature does not share shape-based features with the signature to be verified, but it contains the general characteristics of a signature and useful in verification. Verification rate can be improved by using the general handwriting data, which can be confirmed through the experimental results.

온라인 서명 검증은 간단하면서도 효율적인 본인 확인 방법의 하나로 생체 인식에 따른 거부감이 적은 장점으로 본인 확인 용도로 사용되고 있다. 서명 검증을 분류 문제로 접근하기 위해서는 모조서명이 필요하지만, 대부분의 실용적인 응용에서 모조서명을 확보하기는 쉽지 않으며 진서명 역시 많은 양을 확보하기는 쉽지 않다. 이 논문에서는 모조서명의 확보가 어려운 문제를 해결하기 위해 단일 클래스 SVM을 사용하고, 진서명의 양이 제한되는 문제는 다른 사람의 서명 데이터를 일반 필기 데이터로 사용하여 해결하는 방법을 제시한다. 다른 사람의 서명 데이터는 검증하고자 하는 서명과 형태적인 유사점을 찾을 수 없지만, 서명에서의 일반적인 특징을 반영하고 있으므로 적은 수의 진서명만을 확보할 수 있는 경우에 사용하면 검증률을 높일 수 있으며 이는 실험 결과를 통해서 확인할 수 있다.

Keywords

HOJBC0_2018_v22n11_1435_f0001.png 이미지

Fig. 1 Error rate with respect to threshold

HOJBC0_2018_v22n11_1435_f0002.png 이미지

Fig. 2 Error rate with respect to the number of training samples

Table. 1 Feature vector description

HOJBC0_2018_v22n11_1435_t0001.png 이미지

Table. 2 Error rate with respect to a verification method

HOJBC0_2018_v22n11_1435_t0002.png 이미지

Table. 3 Error rate and decrease in error rate with respect to the number of training samples

HOJBC0_2018_v22n11_1435_t0003.png 이미지

References

  1. L. M. Mayron, "Biometric Authentication on Mobile Devices," IEEE Security & Privacy, vol. 13, no. 3, pp. 70-73, May-June 2015. https://doi.org/10.1109/MSP.2015.67
  2. T. Neal and D. Woodard, "Surveying Biometric Authentication for Mobile Device Security," Journal of Pattern Recognition Research, vol. 11. no. 1, pp. 74-110, Dec. 2016. https://doi.org/10.13176/11.764
  3. B. I. Jang and C. S. Kim, "A Study on the Security Technology for the Internet of Things," Journal of Security Engineering, vol. 11, no. 5, pp. 429-438, Oct. 2014. https://doi.org/10.14257/jse.2014.10.05
  4. S. H. Kim, Y. Fan, and G. Heo, "An Automatic Signature Verification Algorithm for Smart Devices," Journal of The Korea Society of Computer and Information, vol. 20, no. 10, pp. 15-21, Oct. 2015. https://doi.org/10.9708/jksci.2015.20.10.015
  5. N. Sae-Bae and N. Memon, "Online Signature Verification on Mobile Devices," IEEE Transactions on Information Forensics and Security, vol. 9, no. 6, pp. 933-947, Apr. 2014. https://doi.org/10.1109/TIFS.2014.2316472
  6. S. Sanda, Online Handwritten Signature Verification System, Master thesis, Blekinge Institute of Technology, Sweden, 2017.
  7. G. Heo, S. H. Kim, and Y. Woo, "Online Signature Verification Method using General Handwriting Data," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 12, pp. 2298-2304, Dec. 2017. https://doi.org/10.6109/JKIICE.2017.21.12.2298
  8. M. Amer, M. Goldstein, and S. Abdennadher, "Enhancing one-class supprot vector machines for unsupervised anomaly detection," in Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description, Chicago, Illinois, pp. 8-15, 2013.
  9. Y. Xiao, H. Wang, and W. Xu, "Parameter selection of Gaussian kernel for one-class SVM," IEEE Transactions on Cybernetics, vol. 45, no. 5, pp. 941-953, May 2015. https://doi.org/10.1109/TCYB.2014.2340433
  10. V. Vapnik, Statistical Learning Theory, John Wiley & Sons, New York, 1998.
  11. C. Gruber, T. Gruber, S. Krinninger, and B. Sick, "Online Signature Verification with Support Vector Machines Based on LCSS Kernel Functions," IEEE Transactions on Systems, Man, and Cybernetics Part B(Cybernetics), vol. 40, no. 4, pp. 1088-1100, Aug. 2010. https://doi.org/10.1109/TSMCB.2009.2034382
  12. J. Jayak, B. Naik, and H. S. Behera, "A Comprehensive Survey on Support Vector Machine in Data Mining Tasks: Applications & Challenges," International Journal of Database Theory and Application, vol. 8, no. 1, pp. 169-186, Feb. 2015.
  13. M. Hejazi and Y. P. Singh, "One-Class Support Vector Machines Approach to Anomaly Detection," Applied Artificial Intelligence, vol. 27, no. 5, pp. 351-366, May 2013. https://doi.org/10.1080/08839514.2013.785791
  14. A. Anaissi, N. L. D. Khoa, S. Mustapha, M. M. Alamdari, A. Braytee, Y. Wang, and F. Chen, "Adaptive One-Class Support Vector machine for Damage Detection in Structural Health Monitoring," in Proceedings of the 21th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Jeju, Korea, pp. 42-57, 2017.
  15. LIBSVM-A Library for Support Vector Machines [Internet]. Available: https://www.csie.ntu.edu.tw/-cjlin/libsvm/