DOI QR코드

DOI QR Code

Variable Coast를 이용하는 3.5 지구-달 위상전이궤적에서 SEM 각도에 따른 임무설계 및 해석

Mission Design and Analysis based on SEM Angle by Using Variable Coast During 3.5 Earth-Moon Phasing Loop Transfer

  • 투고 : 2017.07.31
  • 심사 : 2017.11.27
  • 발행 : 2018.01.01

초록

달 궤도선의 전반적인 특성을 해석하기 위해 일별 발사가 가능한 Variable Coast 방식을 3.5 위상전이궤적에 적용하였다. 발사장 및 발사체를 선정하여 발사에서부터 달 궤도 진입까지의 전 과정에 대한 임무 시나리오를 구성 및 해석을 수행하였다. 특히 지구-달 회전좌표계에서 정의한 SEM(Satellite-Earth-Moon) 각도는 3.5 위상전이궤적을 전반적으로 검토할 수 있는 중요한 구속조건이다. SEM 각도를 이용한 시뮬레이션 결과를 지구-달 전이궤적 및 달 궤도 진입에서의 발사 시각, 관성비행 기간, 근지점 고도 및 ${\Delta}V$등 다양한 관점으로 분석하고 최적의 SEM 각도를 제안하였다. 이 결과는 향후 Fixed Coast 분석결과와 비교함으로써 발사체 선정에 따른 3.5 위상전이궤적의 특성을 평가하는데 큰 도움을 줄 것으로 예상된다.

In order to analyze the overall characteristics of the lunar orbiter, the Variable Coast method, which can be launched everyday, is applied to the 3.5 phasing loop transfer trajectory. The mission scenario for the entire process from launching to entering the lunar orbit is set up and performed simulation by selecting the launch pad and launch vehicle. In particular, the SEM(Satellite-Earth-Moon) angle defined in Earth-Moon rotating frame is an important constraint to comprehensively evaluate the 3.5 phasing loop transfer trajectory. The simulation using SEM angle is analyzed from various viewpoints such as launch epoch, coast duration, perigee altitude and ${\Delta}V$ not only trans-lunar trajectory but lunar orbit insertions and the optimum SEM angle is suggested in this study. It is expected that this results will be helpful to evaluate the characteristics of the 3.5 phasing loop transfer trajectory according to the launch vehicle selection by comparison with Fixed Coast analysis results in the future.

키워드

참고문헌

  1. 과학기술정보통신부 '달 탐사 1단계 개발 계획', http://www.msip.go.kr/cms/www/open/go30/info/info_1/info_11/_icsFiles/afieldfile/2016/08/12/(1%ED%98%B8%20%EC%95%88%EA%B1%B4)%20%EB%8B%AC%20%ED%83%90%EC%82%AC%201%EB%8B%A8%EA%B3%84%20%EA%B0%9C%EB%B0%9C%20%EA%B3%84%ED%9A%8D.pdf
  2. Loucks, M., Plice, L., Cheke, D., Maunder, C., and Reich, B., "Trade Studies in LADEE Trajectory Design," Proceedings of the 25th AAS/AIAA Space Flight Mechanics Meeting, 11-15 Jan, 2015.
  3. Katoh, T., Terada, H., and Tanaka K., "Orbital Maneuver Plan and Operation Results of 'KAGUYA' during Lunar Transfer Orbit and Lunar Orbit Injection," The 26th International Symposium on Space Technology and Science, 1-11 Jun, 2008.
  4. https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/chandrayaan-1
  5. Lozier, D., Galal, K., Folta, D., and Beckman, M., "Lunar Prospector Mission Design and Trajectory Support", AAS(American Astronautical Society), 1998.
  6. Beckman, M., "Mission Design for the Lunar Reconnaissance Orbiter," 29th Annual AAS Guidance and Control Conference, 2006.
  7. Roncoli, R., and Jujii, K., "Mission Design Overview for the Gravity Recovery and Interior Laboratory(GRAIL) Mission," AIAA/AAS Aerodynamics Specialist Conference, 2-5 Aug, 2010.
  8. Choi, S. J., Kim, I. K., Moon, S. M., Kim, C. K., and Rew D. Y., "A Study on the Analysis of Visibility between a Lunar Orbiter and Ground Stations for Trans-lunar Trajectory and Mission Orbit", Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 3, 2016, pp.218-227. https://doi.org/10.5139/JKSAS.2016.44.3.218
  9. https://en.wikipedia.org/wiki/Orbit_of_the_Moon
  10. http://spaceflight101.com/spacerocketsantares-200-series/
  11. Kim, S. K., Won, S. H., Choi, J. W., Lee, H, D., and Lee, J. W., "Development of Monopropellant Propulsion System for Lunar Orbiter", The Korean Society of Propulsion Engineers Fall Conference, 21-23 Dec, 2017.
  12. Choi, S. J., Lee, D. H., Park J. I., Lim, S. B., and Choi, S. W., "Delta-V Analysis according to the Number of Perigee Maneuvers using 3.5 Phasing Loop Transfer Trajectory of Lunar Orbiter", The Society for Aerospace System Engineering Fall Conference, 2-4 Nov, 2017.
  13. Choi, S. J., Song, Y. J., Bae, J. H., Kim, E. K., and Ju, G. H., "Design and Analysis of Korean Lunar Orbiter Mission using Direct Transfer Trajectory", J. of The Korean Society for Aeronautical and Space Sciences, Vol. 41, No. 12, 2013, pp.950-958. https://doi.org/10.5139/JKSAS.2013.41.12.950