• Title/Summary/Keyword: 위상전이궤적

Search Result 3, Processing Time 0.02 seconds

An Analysis of Mid-Course Correction Maneuvers according to Launch-Vehicle Dispersion in Earth-Moon Phasing-Loop Trajectory (지구-달 위상전이궤적에서 발사체 투입오차가 중간경로수정기동에 미치는 영향 분석)

  • Choi, Su-Jin;Lee, Dong-Hun;Suk, Byong-Suk;Min, Seung-Yong;Rew, Dong-Young
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.35-40
    • /
    • 2016
  • Mid-course correction maneuvers (MCCMs) are necessary to correct the launch-vehicle dispersion to go to the Moon. There were 3 or 4 MCCMs needed for a direct transfer trajectory. But the strategy for MCCMs of the phasing-loop trajectory is different, because it has a longer trans-lunar trajectory than direct transfer does. An orbiter using a phasing-loop trajectory has several rotations of the Earth, so the orbiter has several good places, such as perigee and apogee, to correct the launch-vehicle dispersion. Although launch dispersion is relatively high, the launch vehicle is not as accurate as we expected. A good MCCM strategy can overcome the high dispersion by using small-magnitude correction maneuvers. This paper describes the phasing-loops sequence and strategy to correct high launch-vehicle dispersions.

Mission Design and Analysis based on SEM Angle by Using Variable Coast During 3.5 Earth-Moon Phasing Loop Transfer (Variable Coast를 이용하는 3.5 지구-달 위상전이궤적에서 SEM 각도에 따른 임무설계 및 해석)

  • Choi, Su-Jin;Lee, Donghun;Lim, Seong-Bin;Choi, Suk-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.68-77
    • /
    • 2018
  • In order to analyze the overall characteristics of the lunar orbiter, the Variable Coast method, which can be launched everyday, is applied to the 3.5 phasing loop transfer trajectory. The mission scenario for the entire process from launching to entering the lunar orbit is set up and performed simulation by selecting the launch pad and launch vehicle. In particular, the SEM(Satellite-Earth-Moon) angle defined in Earth-Moon rotating frame is an important constraint to comprehensively evaluate the 3.5 phasing loop transfer trajectory. The simulation using SEM angle is analyzed from various viewpoints such as launch epoch, coast duration, perigee altitude and ${\Delta}V$ not only trans-lunar trajectory but lunar orbit insertions and the optimum SEM angle is suggested in this study. It is expected that this results will be helpful to evaluate the characteristics of the 3.5 phasing loop transfer trajectory according to the launch vehicle selection by comparison with Fixed Coast analysis results in the future.

A Study on the Analysis of Visibility between a Lunar Orbiter and Ground Stations for Trans-Lunar Trajectory and Mission Orbit (지구-달 전이궤적 및 임무 궤도에서 궤도선과 지상국의 가시성 분석에 관한 연구)

  • Choi, Su-Jin;Kim, In-Kyu;Moon, Sang-Man;Kim, Changkyoon;Rew, Dong-young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.218-227
    • /
    • 2016
  • Korean government plans to launch a lunar orbiter and a lander to the Moon by 2020. Before launch these two proves, an experimental lunar orbiter will be launched by 2018 to obtain key space technologies for the lunar exploration. Several payloads equipped in experimental lunar orbiter will monitor the surface of the Moon and will gather science data. Lunar orbiter sends telemetry and receives tele-command from ground using S-band while science data is sent to ground stations using X-band when the visibility is available. Korean deep space network will be mainly used for S and X-band communication with lunar orbiter. Deep Space Network or Universal Space Network can also be used for the S-band during trans-lunar phase when korean deep space network is not available and will be used for the S-band in normal mission orbit as a backup. This paper analyzes a visibility condition based on the combination of various ground antennas and its mask angles according to mission scenario to predict the number of contacts per day and to build an operational scenario for the lunar orbiter.