Power Control in RF Energy Harvesting Networks

무선 에너지 하비스팅 네트워크에서의 전력 제어 기법

  • 황유민 (광운대학교 유비쿼터스 통신 연구실) ;
  • 신동수 (국방대학교 국방과학학과) ;
  • 김진영 (광운대학교 유비쿼터스 통신 연구실)
  • Received : 2017.05.09
  • Accepted : 2017.05.26
  • Published : 2017.06.30

Abstract

This paper aims to maximize the energy harvesting rate and channel capacity in RF-energy harvesting networks (RF-EHNs) under the constraints of maximum transmit power and minimum quality of service (QoS) in terms of rate capacity for each user. We study a multi-user RF-EHN with frequency division multiple access (FDMA) in a Rayleigh channel. An access point (AP) simultaneously transmitting wireless information and power in the RF-EHN serves a subset of active users which have a power-splitting antenna. To gauge the network performance, we define energy efficiency (EE) and propose an optimization solution for maximizing EE with Lagrangian dual decomposition theory. In simulation results, we confirm that the EE is effectively maximized by the proposed solution with satisfying the given constraints.

본 논문에서는 RF 에너지 하비스팅 네트워크에서 최대 전송 파워량 제한 및 최소 채널 용량 달성에 관한 제약조건을 만족시키며 에너지 하비스팅율과 채널 용량을 최대화 시키는 연구를 진행하였다. 전력 분할 기법 (power-splitting scheme) 기반 안테나로 구성된 주파수 분할 다중접속 환경에서 하나의 액세스 포인트 (access point)로부터 무선 에너지와 정보를 사용자들에게 동시에 송수신하는 모델을 가정하였다. 네트워크 성능 지표로서 에너지 효율 (energy efficiency)을 정의하고 이를 최대화 시킬 수 있는 Lagrange 이중 분해 기반의 최적화 솔루션을 제안하였다. 모의실험 결과를 통해 제안한 솔루션이 설정된 제한조건들을 만족하면서 효과적으로 에너지 효율을 최대화시키는 것을 확인하였다.

Keywords

References

  1. X. Lu, D. Niyato, P. Wang, D. I. Kim, and Z. Han, "Wireless charger networking for mobile devices: fundamentals, standards, and applications," IEEE Wireless Commun., vol. 22, no. 2, pp. 126-135, Apr. 2015. https://doi.org/10.1109/MWC.2015.7096295
  2. R. Zhang and C. K. Ho, "MIMO broadcasting for simultaneous wireless information and power transfer," IEEE Trans. Wireless Commun., vol. 12 , no. 5, pp. 1989-2001, May 2013. https://doi.org/10.1109/TWC.2013.031813.120224
  3. S. Shrestha, S. K. Noh, and D. Y. Choi, "Comparative study of antenna designs for RF energy harvesting," Int. J. Antennas and Propagation, vol. 2013, pp. 1-10, Apr. 2013.
  4. L. Xiao, P. Wang, D. Niyato, D. I. Kim, and Z. Han, "Wireless networks with RF energy harvesting: A contemporary survey," IEEE Commun. Surveys and Tutorials, vol. 17, no. 2, pp. 757-789, May 2015. https://doi.org/10.1109/COMST.2014.2368999
  5. K. Zheng, S. Ou, and X. Yin, "Massive MIMO channel models: A survey," Hindawi Int. J. Antennas Propagation, vol. 2014, pp. 1-10, June 2014.
  6. K. Huang and E. G. Larsson, "Simultaneous information and power transfer for broadband downlink systems," IEEE Trans. Signal Processing, vol. 61, no. 23, pp. 5972-5986, Dec. 2013. https://doi.org/10.1109/TSP.2013.2281026
  7. L. R. Varshney, "Transporting information and energy simultaneously," Proc. IEEE Int. Symp. Information Theory (ISIT), pp. 1612-1616, July 2008.
  8. X. Zhou, R. Zhang, and C. K. Ho, "Wireless information and power transfer: architecture design and rate-energy tradeoff," IEEE Trans. Commun., vol. 61, no. 11, pp. 4757-4767, Nov. 2013.
  9. C. A. Balanis, "Antenna theory: analysis and design," John Wiley & Sons, 2012.
  10. D. Gesbert, M. Shafi, D. Shiu, and P. Smith, "From theory to practice: An overview of space-time coded MIMO wireless systems," IEEE J. Sel. Areas. Commun. (JSAC), vol. 21, no. 3, pp. 281-302, Apr. 2003. https://doi.org/10.1109/JSAC.2003.809458
  11. W. Dinkelbach, "On Nonlinear Fractional Programming," Management Science, vol. 13, pp. 492-498, Mar. 1967. [Online]. Available: http://www.jstor.org/stable/2627691 https://doi.org/10.1287/mnsc.13.7.492
  12. Z. Wang and G. Giannakis, "Outage mutual information of space-time MIMO channels," IEEE Trans. Information Theory, pp. 657-662, Apr. 2004.
  13. S. Boyed and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004.