DOI QR코드

DOI QR Code

Development of Shielding using Medical Radiological Contrast Media; Comparison Analysis of Barium Sulfate Iodine Shielding ability by Monte Carlo Simulation

의료방사선 조영제를 이용한 차폐체 개발; 몬테카를로 시뮬레이션을 통한 황산바륨과 요오드의 차폐능 비교분석

  • Kim, Seon-Chil (Department of Biomedical Engineering, Medical School Keimyung University)
  • 김선칠 (계명대학교 의과대학 의용공학과)
  • Received : 2017.07.28
  • Accepted : 2017.10.31
  • Published : 2017.10.31

Abstract

The purpose of this study is to estimating the possibility of manufacturing radiation shielding sheet by searching for environmentally friendly materials suitable for medical environment of medical radiation shielding. There are many tungsten products which are currently used as shielding materials in place of lead, but there are small problems in the mass production of lightweight shielding sheets due to economical efficiency. To solve these problems, a lightweight, environmentally friendly material with economical efficiency is required. In this study, Barium sulphate and Iodine were proposed. Both materials are already used as contrast medias in radiography, and it is predicted that the shielding effect will be sufficient in a certain region as a shielding material because of the characteristic of absorbing radiation. Therefore, in this study, we used a Monte Carlo simulation to simulate radiation shielding materials. When it is a contrast agent such as Barium sulfate and Iodine, the radiation absorption effect in the high energy region appears greatly, and the effectiveness of the two shielding substance in the energy region of the star with thickness of 120 kVp is also evaluated in the medical radiation imaging region. Simulated estimation results it was possible to estimate the effectiveness of shielding for all two substances. Iodine has higher shielding effect than barium sulfate, 0.05 mm thick appears great effect. Therefore, the Monte Carlo simulation confirms that iodine, which is a radiological contrast agent, is also usable as barium sulfate in the production of radiation shielding sheets.

본 연구는 의료방사선 차폐를 위해 의료 환경에 적합한 친환경 소재를 찾아 방사선 차폐 시트 제작의 가능성을 추정하고자 하는 것이다. 현재 차폐 소재로 주로 사용되는 납을 대신한 텅스텐 제품이 많이 있으나, 경제성으로 인해 경량의 차폐 시트의 대량생산에는 다소 문제가 있다. 이러한 문제점을 해결하기 위해 경제성 있는 경량 친환경 소재를 필요로 한다. 이러한 소재로써 본 연구에서는 황산바륨과 요오드를 제안하였다. 두 물질은 방사선 촬영에서 이미 조영제로 사용되고 있어 방사선을 흡수하는 특성으로 차폐 재료로써 일정 영역에서 충분히 차폐효과가 있을 것으로 예측하고 있다. 따라서 본 연구에서는 방사선 차폐 재료로 검증하기 위해 몬테카를로 시뮬레이션을 이용하여 모의 추정하였다. 황산바륨과 요오드 등 조영제인 경우 고에너지 영역에서 방사선 흡수효과가 크게 나타나, 의료방사선 고관전압 촬영영역 120 kV의 두께별 에너지영역에서 두 차폐물질의 유효성을 평가하였다. 모의 추정 결과 두 물질 모두 차폐의 유효성을 추정할 수 있었다. 요오드가 황산바륨보다 차폐효과 높았으며, 0.05mm 두께에서는 효과성이 크게 나타났다. 따라서 방사선차폐 시트의 제작 재료로 방사선 조영제인 요오드도 황산바륨과 같이 가능하다는 것을 몬데카를로 시뮬레이션을 통해 확인 할 수 있다.

Keywords

References

  1. Ruttimann UE, Webber RL, Schmidt E. "A robust digital method for film contrast correction in subtraction radiography," J Periodont Res Vol. 21, No. 5, pp. 486-495, 1986. https://doi.org/10.1111/j.1600-0765.1986.tb01484.x
  2. Thomsen H. S, Muller R. N, Mattrey R. F, eds. Trends in Contrast Media, Berlin: Springer Ver. pp. 119, 1999.
  3. Yoshikawa H. "Late adverse reactions to non-ionic contrast media," Radiology, Vol. 183, No. 3, pp. 737-740, 1992. https://doi.org/10.1148/radiology.183.3.1584929
  4. Miller, K.E. and Skucas, J., Radiographic contrast agents, University Park Press, Baltimore, Vol. 9, 1977.
  5. Levin D.C., Rao V.M., Parker L., Frangos A.J., Sunshine J.H., "Recent trends in utilization rates of abdominal imaging: the relative roles of radiologists and non radiologist physicians," J. Am. Coll. Radiol., Vol. 5, No. 6, pp. 744-747, 2008. https://doi.org/10.1016/j.jacr.2007.12.008
  6. Howell W.L.J., "Barium shortage affecting radiology practices," Diagnostic imaging. 2013.
  7. Davidson JC, Einstein DM, Herts BR, et al. "Comparison of two barium suspensions for dedicated small-bowel series," AJR Am. J. Roentgenol., Vol. 172, No.2, pp. 379-382, 1999. https://doi.org/10.2214/ajr.172.2.9930787
  8. Noriko Yamaguchi, Masashi Nakano, "Inorganic iodine incorporation into soil organic matter: evidence from iodine K-edge X-ray absorption near-edge structure," Journal of Environmental Radioactivity, Vol. 101, No. 6, pp. 451-457, 2010. https://doi.org/10.1016/j.jenvrad.2008.06.003
  9. Kim, S.C, Park, M.H, Development of Radiation Shield with Environmentally-friendly Materials; I: Comparison and Evaluation of Fiber, Rubber, Siliconin the Radiation Shielding Sheet. Journal Radiology Science. Technology, Vol 33, No. 2, pp. 121-126, 2010.
  10. Kim, S.K, Dong, K.R, Chung, W.K, Performance Evaluation of a Medical Radiation Shielding Sheet with Barium as an Environment-friendly Materials. J Korean Physicies. Soc., Vol 60, pp. 165-170, 2012. https://doi.org/10.3938/jkps.60.165
  11. S. Roesler, "Monte Carlo calculation of the radiation field at aircraft altitudes," Radi. Prot. Dosim., Vol. 98, No. 4, pp. 367-388, 2002. https://doi.org/10.1093/oxfordjournals.rpd.a006728
  12. Daryoush Sheikh-Bagheri, D. W. O. Rogers "Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code," Medical Physics, Vol. 29, No. 3, pp. 391-402, 2002. https://doi.org/10.1118/1.1445413
  13. J. M. Clem, "Preliminary validation of computational procedures for a new Atmospheric Ionizing Radiation (AIR) model," Adv. Space Res., Vol. 31, No. 1, pp. 27-33, 2003. https://doi.org/10.1016/S0273-1177(02)00653-1
  14. Bryan Bednarz, X. George Xu, "A feasibility study to calculate unshielded fetal doses to pregnant patients in 6-MV photon treatments using Monte Carlo methods and anatomically realistic phantoms," Medical Physics, Vol. 35, No. 7, pp. 3054-3061, 2008. https://doi.org/10.1118/1.2938519
  15. S. C. Kim, "Performance Evaluation of a Medical Radiation Shielding Sheet with Barium as an Environment-friendly Material," Journal of The Korean Physical Society, Vol. 60, Issue 1, pp. 165-170, 2012. https://doi.org/10.3938/jkps.60.165
  16. Gkanatsios NA, Huda W, Peters KR. "Effect of radiographic techniques (kVp and mAs) on image quality and patient doses in digital subtraction angiography," Med. Phys, Vol. 29, Issue 8, pp. 1643-1650, 2002. https://doi.org/10.1118/1.1493213
  17. Van Soldt RTM, Zweers D, van den Berg L, Geleigns J, Jansen JTM, Zoetelief J. "Survey of posteroanterior chest radiography in the Netherlands: patient dose and image quality," Br. J. Radiol., Vol. 76, No. 906, pp. 398-405, 2003. https://doi.org/10.1259/bjr/76222078
  18. Friedrich Schone, Matthias Leiterer, "Iodine concentration of milk in a dose-response study with dairy cows and implications for consumer iodine intake," Journal of Trace Elements in Medicine and Biology, Vol. 23, No. 2, pp. 84-92, 2009. https://doi.org/10.1016/j.jtemb.2009.02.004
  19. J. J Bimfer, "Radiation Exposure from Medical Imaging Procedures," The Journal of Nuclear Medicine, New York, Vol. 51, 2010.