DOI QR코드

DOI QR Code

음의 포아송비 거동 격자체의 건설산업에의 적용 가능성 연구

A Preliminary Study of Applicability of Auxetic Mesh for Construction Industry

  • 투고 : 2017.05.15
  • 심사 : 2017.06.19
  • 발행 : 2017.07.01

초록

본 연구는 음의 포아송비 거동을 가지는 격자체의 구조부재 보강재로의 적용이 가능한지에 대한 검토를 수행하였다. 콘크리트를 포함한 일반적인 재료는 외부 하중의 작용 시 양의 포아송비 거동을 가진다. 이러한 콘크리트의 역학적 거동을 음의 포아송비 특성을 가지는 금속 격자체가 구속함으로써 콘크리트의 강성을 증대시킬 수 있음을 이론적으로 확인하였다. 또한 실제 건설산업에 적용이 가능한 수준의 음의 포아송비 거동을 가지는 격자체의 형식을 제시, 역학적 거동 특성을 수치 해석적으로 검토하였다.

This study has been investigated the applicability of auxetic mesh for the reinforcement of structural members. Typical materials including concrete behaves with positive poisson's ratio when external force is applied. In this study, it has been theoretically verified that metallic auxetic mesh restrains as such mechanical behaviors of concrete resulting in the stiffness increase. Also, regarding the applicability to construction field, a type of auxetic mesh has been suggested and the mechanical characteristics were numerically analyzed.

키워드

참고문헌

  1. Alderson, A. (1999), A triumph of lateral thought, Chemistry and Industry, 384-391.
  2. Elipe, Juan C. A., and Lantada, Andres D., (2012), Comparative Study of Auxetic Geometries by Means of Computer-aided Design and Engineering, Smart Materials and Structures, 21(10), p.105004(12pp). https://doi.org/10.1088/0964-1726/21/10/105004
  3. Friis, E. A., Lakes, R. S., and Park, J. B. (1988), Negative Poissson's Ratio Polymeric and Metallic Materials, Materials Science, 23, 4406-4414. https://doi.org/10.1007/BF00551939
  4. Grima, J. N., and Evans, K. E. (2000), Auxetic Behavior from Rotating Squares, Materials Science Letters, 19, 1563-1565. https://doi.org/10.1023/A:1006781224002
  5. Grima, J. N., Gatt, R., Ravirala, N., Alderson, A., and Evans, K. E. (2006). Negative Poisson's Ratios in Cellular foam Materials, Materials Science and Engineering, 423, 214-218. https://doi.org/10.1016/j.msea.2005.08.229
  6. Henderson, B., Whitty, J. P. M., Myler, P., and Chirwa, C. (2007), Crash Performance of Cellular Foams with Reduced Relative Density Part 2: Rib Deletion, International Journal of Crashworthiness, 12, 689-698. https://doi.org/10.1080/13588260701789425
  7. Kaminakis, N. T., Drosopoulos, G. A., and Stavroulakis, G. E. (2015), Design and Verification of Auxetic Microstructures Using Topology Optimization and Homogenization, Architectural Applied Mechanics, 85, 1289-1306. https://doi.org/10.1007/s00419-014-0970-7
  8. Lakes, R. S. (1987), Foam Structures with a Negative Poisson's Ratio, Science, 80(235), 1038-1040.
  9. Lakes, R. S., and Witt, R. (2002), Making and Characterizing Negative Poisson's Ratio Materials, Mechanical Engineering Education, 30, 50-58. https://doi.org/10.7227/IJMEE.30.1.5
  10. Lira, C., Innocenti, P., and Scarpa, F. (2009), Transverse Elastic Shear of Auxetic Multi Re-entrant Honeycombs, Composite Structures, 90, 314-322. https://doi.org/10.1016/j.compstruct.2009.03.009
  11. Qiao, J. X., and Chen, C. Q. (2015), Impact Resistance of Uniform and Functionally Graded Auxetic Double Arrowhead Honeycombs, Impact Engineering, 83, 47-58. https://doi.org/10.1016/j.ijimpeng.2015.04.005
  12. Schwerdtfeger, J., Wein, F., Leugering, G., Singer, R. F., Korner, C., Stingl, M., and Schury, F. (2011), Design of Auxetic Structures via Mathematical Optimization, Advanced Materials, 23, 2650-2654. https://doi.org/10.1002/adma.201004090