DOI QR코드

DOI QR Code

파괴하중의 20% 및 40% 인장조건에서 텐던 부식 진행 및 파괴하중 변화

Changes in Corrosion Progress and Ultimate load of Tendon Under 20% and 40% of Ultimate Loading Conditions

  • 류화성 ((주)한양이엔씨) ;
  • 안기홍 (한국건설기술연구원) ;
  • 황철성 (가천대학교 토목환경공학과) ;
  • 권성준 (한남대학교 건설시스템 공학과)
  • 투고 : 2017.02.01
  • 심사 : 2017.03.20
  • 발행 : 2017.07.01

초록

PSC(Prestressed Concrete)는 전단면을 유효하게 사용할 수 있으므로 교량 및 암거와 같은 구조물에 가장 많이 사용되고 있다. 그러나 내부의 텐던은 항상 높은 인장하중을 받는 상태에 노출되므로 부식환경에서 더욱 주의를 해야한다. 본 연구는 동일한 부식조건에서 프리스트레싱 하중에 따라 변화하는 부식전류 및 내력저하에 대한 연구이다. 이를 위해 초기 프리스트레싱 하중의 0.0%, 20.0%, 40.0%수준으로 가력한 뒤, ICM(Impressed Current Method)를 이용하여 촉진부식실험을 수행하였다. 초기 하중이 증가할수록 부식전류와 부식량은 증가하였으며 최대하중의 감소가 선형적으로 발생하였다. 초기하중이 20%에서 40%로 증가할 때, 부식전류량은 124.4%와 168.0% 수준으로 증가하였으며, 최종 파괴시의 하중은 87.8% 및 78.4%수준으로 감소하였다. 동일한 전압인가 시 부식속도와 내력저하는 인가한 초기 프리스트레싱 하중에 비례함을 알 수 있다.

PSC (Prestressed Concrete) structures have been used widely for its engineering advantage with using total concrete area as effective compressive section. However tendon inside is exposed to such a high tensile stress that and more attentions should be paid for corrosion control. This work is for changing corrosion current and ultimate strength in tendon with increasing prestressing force in a constant corrosive condition. With increasing prestressing force, corrosion current, corrosion amount, and ultimate load are changed linearly. When prestressing force increases from 20.0 % to 40.0 %, corrosion current increases to 124.4 % and 168.0 % and ultimate load decreases to 87.8 % and 78.4 %, respectively. With inducing constant electrical potential, increasing corrosion current and reduction of strength are evaluated to be linearly related with increasing prestressing load.

키워드

참고문헌

  1. ACI 318-11 (2011), Building Code Requirements for Structural Concrete and Commentary, ACI Commitee 440.
  2. Andrade, C. (1993), Calculation of Chloride Diffusion Coefficients in Concrete from Ionic Migration Measurement, Cement and Concrete Research, 23(3), 724-742. https://doi.org/10.1016/0008-8846(93)90023-3
  3. Baek, S. H., William, X., Maria Q. F., and Kwon S. J. (2012), Nondestructive Corrisoin Detection in RC Through Integrated Heat Induction and IR Thermography, Journal of Nondestructive Evaluation, 31(2), 181-190. https://doi.org/10.1007/s10921-012-0133-0
  4. Broomfield, J. P. (1997), Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, London, 1-15.
  5. Clemena, G. G., McKeel, W. T. (1978), Detection of Delamination in Bridge Decks with Infrared Thermography, Transportation Research Record, (664), 25-85.
  6. Fumin, L., Yingshu, Y., and Chun-Qing, L. (2011), Corrosion Propagation of Prestressing Steel Strands in Concrete Subject to Chloride attack, Construction and Building Materials, 25(10), 3878-3885. https://doi.org/10.1016/j.conbuildmat.2011.04.011
  7. Gerard, B., Marchand, J. (2000), Influence of Cracking on the Diffusion Properties of Cement-Based Materials Part I: Influence of Continuous Cracks on the Steady-State Regime, Cement and Concrete Research, 30(1), 37-43. https://doi.org/10.1016/S0008-8846(99)00201-X
  8. Halsall, A. P., Welch, W. E., and Treparier S. M. (1996), Acoustic Monitoring Technology for Post-Tensioned Concrete Structures, Proceeding of the FIP Symposium 1996 on Post-tensioned Concrete Structures, The Concrete Society, 483-491.
  9. Ishida, T., Maekawa, K. (2001), Modeling of PH Profile in Pore Water Based on Mass Transport and Chemical Equilibrium Theory, Concrete Library of JSCE, 37(1), 151-166.
  10. ISO 15630-3 (2010), Steel for the reinforcement and prestressing of concrete- test methods, part 3.
  11. Jacobsen, S., Marchand, J., and Boisvert, L. (1996), Effect of Cracking and Healing on Chloride Transport in OPC Concrete, Cement and Concrete Research, 26(6), 869-881. https://doi.org/10.1016/0008-8846(96)00072-5
  12. JSCE Guidelines for Concrete (2007), Standard Specification for Concrete Structures-Design, Japan Society of Civil Engineering.
  13. KCI (2012), Concrete Specification-Durability Part, Korea Concrete Institute.
  14. Kim, Y. Y., Youn, S. G and Kim, E. K. (2007), Experimental Test for Measuring Prestress in PSC Beam Using Flat-Jack, Proceedings of the Annual Conference of Korea Concrete Institute, 19(1), 501-504.
  15. Kwon, S. J., Na, U. J., Park, S. S., and Jung, S.H. (2009), Service Life Prediction of Concrete Wharves with Early-Aged Crack: Probabilistic Approach for Chloride Diffusion, Structural Safety, 31(1), 75-83. https://doi.org/10.1016/j.strusafe.2008.03.004
  16. Kwon, S. J., Park, S. S., Lee, S. M., and Kim, J. H. (2007), A Study on Durability Improvement for Concrete Structures Using Surface Impregnant, Journal of the Korea Institute for Structural Maintenance Inspection, 11(4), 79-88.
  17. Kwon, S.-J., Park, S. S.(2012), Non Destructive Technique for Steel Corrosion Detection Using Heat Induction and IR Thermography, Journal of the Korea Institute for Structural Maintenance and Inspection, 16(2), 40-48. https://doi.org/10.11112/jksmi.2012.16.2.040
  18. Maekawa, K., Ishida, T., and Kishi, T. (2009), Multi-Scale Modeling of Structural Performance, Taylor & Francis, 322-325.
  19. National Standard of Canada (2000), Canadian highway bridge design code, CSA International, CAN/CSA-S6-00, Ontario, Canada.
  20. Park, S. S., Kwon, S. J., and Jung, S. H. (2012b), Analysis Technique for Chloride Penetration in Cracked Concrete Using Equivalent Diffusion and Permeation, Construction and Building Materials, 29(2), 183-192. https://doi.org/10.1016/j.conbuildmat.2011.09.019
  21. Park, S. S., Kwon, S. J., Jung, S. H., and Lee, S. W.(2012a), Modeling of Water Permeability in Early Aged Concrete with Cracks Based on Micro Pore Structure, Construction and Building Materials, 27(1), 597-604. https://doi.org/10.1016/j.conbuildmat.2011.07.002
  22. Park, S. S., Song, H. W., and Byun, K. J. (2001), Model for Chloride Diffusivity and Water Permeability in Cracked Concrete, Journal of Korean Society of Civil Engineering, 22(6), 925-924.
  23. RILEM (1994), Durability Design of Concrete Structures, Report of RILEM Technical Committee 130-CSL, E&FN.
  24. Sakurada, S., Irie H., Yoshida Y. (2008), Development of Reinforced Concrete Corrosion Amount Presumption Method by Ultrasonic Method, 17th World Conference on Nondestructive Testing, Shanghai, China, 1-6.
  25. Shuxian, H., Herbert W., Rosemarie H., Biqin D., Peng D., and Feng, X. (2017), Long-Term Monitoring of Reinforcement Corrosion in Concrete Using Ground Penetrating Radar, Corrosion Science, 114, 123-132. https://doi.org/10.1016/j.corsci.2016.11.003
  26. Song, H. W., Cho, H. J., Park, S. S., Byun, K. J. and Maekawa, K.(2001), Early-Age Cracking Resistance Evaluation of Concrete Structure, Concrete Science Engineering, 3(1), 62-72.
  27. Song, H. W., Kim, H. J. Kwon, S. J., Lee, C. H., Byun, K. J., and Park, C.K. (2005b), Prediction of Service Life in Cracked Reinforced Concrete Structures Subjected to Chloride Attack and Carbonation, 6th International Congress Global Construction: Ultimate Concrete Opportunities, Dundee, Scotland, Cement Combinations for Durable Concrete, 767-776.
  28. Song, H. W., Kwon, S. J., Byun, K. J., and Park. C. K. (2005a), A Study on Analytical Technique of Chloride Diffusion Considering Characteristics of Mixture Design for High Performance Concrete Using Mineral Admixture, Journal of Korean Society of Civil Engineering, 25(1A), 213-223.
  29. Woodward, R. J. and Williams, F. W. (1988), Collapse of ynys-sgwas bridge, Proccedings of the institute of Civil Engineers, West Glamorgan, Part 1, 84, 635-669. https://doi.org/10.1680/iicep.1988.179
  30. Youn, S. G. (2013), Experimental Evaluation for Ultimate Flexural Behaviors of PSC beams with A Corroded Tendon, Journal of the Korean Society of Civil Engineers, 33(3), 843-854. https://doi.org/10.12652/Ksce.2013.33.3.843
  31. Youn, S. G., Cho, S. K., and Kim, E. K. (2005), Acoustic Emission Technique for Detection of Corrosion-Induced Wire Fracture, Key Engineering Materials, Vols. 297-300, pp. 2040-2045. https://doi.org/10.4028/www.scientific.net/KEM.297-300.2040
  32. Youn, S. G., Lee, C., and Kim, E. K. (2006), Estimation of Velocities of Acoustic Signals and Source Locations in PSC Beam by Acoustic Emission, Journal of the Korean Society of Civil Engineers, 26(5a), 917-925.