DOI QR코드

DOI QR Code

Regulation of human gingival fibroblast gene expression on microgrooves: A DNA microarray study

마이크로그루브 상 인간치은섬유아세포의 유전자 발현 분석: DNA microarray 연구

  • Lee, Kyungho (Department of Dentistry, Graduate School, Kyung Hee University) ;
  • Leesungbok, Richard (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University) ;
  • Ahn, Su-Jin (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University) ;
  • Park, Su-Jung (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University) ;
  • Lee, Suk Won (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University)
  • 이경호 (경희대학교 대학원 치의학과) ;
  • 이성복 (강동경희대학교치과병원 보철과 경희대학교 치과대학, 치의학전문대학원 치과보철학교실) ;
  • 안수진 (강동경희대학교치과병원 보철과 경희대학교 치과대학, 치의학전문대학원 치과보철학교실) ;
  • 박수정 (강동경희대학교치과병원 보철과 경희대학교 치과대학, 치의학전문대학원 치과보철학교실) ;
  • 이석원 (강동경희대학교치과병원 보철과 경희대학교 치과대학, 치의학전문대학원 치과보철학교실)
  • Received : 2017.06.08
  • Accepted : 2017.09.14
  • Published : 2017.10.31

Abstract

Purpose: We aimed to investigate the gene expression of human gingival fibroblasts on microgroove surface using DNA microarray. Materials and methods: Microgrooves were applied on grade II titanium discs to have 0/$0{\mu}m$ (NE0, control group), 60/$10{\mu}m$ (E60/10, experimental group) of respective width/depth by photolithography. The entire surface of the microgrooved Ti substrata was further acid etched and used as the two experimental groups in this study. Human gingival fibroblasts were cultured in the experimental group and the control group, and total RNA was extracted. The oligonucleotide microarray was performed to confirm the changes of various gene expression levels between experimental group and control group. Changes of gene expression level were determined at the pathway level by mapping the expression results of DNA chips, using the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis. Results: Gene expression levels on E60/10 and NE0 were analyzed, there were 123 genes showing significant differences in expression more than 1.5 times on E60/10 microgrooved surface compared to NE0 surface, and 19 genes showing significant differences in expression more than 2 times. The KEGG pathway analysis confirmed the changes in gene expression levels under experimental conditions. Cell signaling, proliferation, and activity among the various gene expression results were identified. Conclusion: Microgrooved surfaces induce gene expression changes and related cell signaling. According to the results of this study, microgrooves can be used as the surface of various biomaterials which need to improve cell activity through gene expression changes and activation of cell signaling.

목적: 마이크로그루브 상 인간치은섬유아세포의 유전자발현감식을 DNA microarray를 이용하여 연구하는 것이다. 재료 및 방법: Grade II 티타늄 시편을 이용하여 표면에 마이크로그루브(폭/깊이: $60{\mu}m/10{\mu}m$, E60/10)를 형성하고 불산으로 산에칭하여 실험군으로 사용하였다. 표면처리를 하지 않은 평활한 티타늄 표면(NE0)을 대조군으로 사용하였다. 실험군과 대조군에 인간치은섬유아세포를 배양한 후 total RNA를 추출하였다. Oligonucleotide microarray를 시행하여 실험군과 대조군 간 다양한 유전자 발현량의 변화를 확인하였다. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis를 통해 DNA chip의 발현 결과를 mapping하여 실험 조건에 따른 유전자 발현량의 변화를 pathway 수준에서 파악하였다. 결과: E60/10 마이크로그루브 표면과 NE0 표면에 대한 유전자 발현량 비교분석 결과, NE0 표면에 비하여 E60/10 마이크로그루브 표면에서 1.5배 이상 유의한 발현 차이를 보인 유전자는 123개, 2배 이상 유의한 발현 차이를 보인 유전자는 19개였다. 실험 조건에 따른 유전자 발현량의 변화를 KEGG pathway analysis를 통하여 확인하였고, 다양한 유전자 발현 결과들 중 대표적인 세포접착, 증식, 활성 관련 세포신호전달을 규명하였다. 결론: 마이크로그루브 표면은 다양한 유전자 발현 변화를 유도하고 관련 세포신호 전달을 유도한다. 본 연구의 결과에 따라서, 마이크로그루브는 유전자 발현 변화 및 세포신호 전달 활성화 등을 통한 세포활성도 증진을 필요로 하는 다양한 생체재료들의 표면으로 사용될 수 있다.

Keywords

References

  1. Kasemo B, Lausmaa J. Surface science aspects on inorganic biomaterials. In CRC critical reviews in biocompatibility. Boca Raton FL, CRC Press, 1986. p. 335-80.
  2. Albrektsson T, Wennerberg A. Oral implant surfaces: Part 1-review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 2004; 17:536-43.
  3. Morra M, Cassinelli C, Bruzzone G, Carpi A, Di Santi G, Giardino R, Fini M. Surface chemistry effects of topographic modification of titanium dental implant surfaces: 1. Surface analysis. Int J Oral Maxillofac Implants 2003;18:40-5.
  4. Zhao L, Mei S, Chu PK, Zhang Y, Wu Z. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials 2010;31:5072-82. https://doi.org/10.1016/j.biomaterials.2010.03.014
  5. Lee SW, Kim SY, Rhyu IC, Chung WY, Leesungbok R, Lee KW. Influence of microgroove dimension on cell behavior of human gingival fibroblasts cultured on titanium substrata. Clin Oral Implants Res 2009;20:56-66. https://doi.org/10.1111/j.1600-0501.2008.01597.x
  6. Chou L, Firth JD, Uitto VJ, Brunette DM. Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts. J Cell Sci 1995;108:1563-73.
  7. Jockusch BM, Bubeck P, Giehl K, Kroemker M, Moschner J, Rothkegel M, Rudiger M, Schluter K, Stanke G, Winkler J. The molecular architecture of focal adhesions. Annu Rev Cell Dev Biol 1995;11:379-416. https://doi.org/10.1146/annurev.cb.11.110195.002115
  8. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci 2002; 115:3861-3. https://doi.org/10.1242/jcs.00059
  9. Park SJ, Leesungbok R, Ahn SJ, Im BJ, Lee DY, Jee YJ, Yoon JH, Cui T, Lee SC, Lee SW. Effect of microgrooves and fibronectin conjugation on the osteoblast marker gene expression and differentiation. J Adv Prosthodont 2015;7:496-505. https://doi.org/10.4047/jap.2015.7.6.496
  10. Lai EC. Notch signaling: control of cell communication and cell fate. Development 2004;131:965-73. https://doi.org/10.1242/dev.01074
  11. Halper J, Kjaer M. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Progress in Heritable Soft Connective Tissue Diseases: Springer; 2014. p. 31-47.
  12. Yun-Feng W, Matsuo N, Sumiyoshi H, Yoshioka H. Sp7/Osterix up-regulates the mouse pro-alpha3(V) collagen gene (Col5a3) during the osteoblast differentiation. Biochem Biophys Res Commun 2010;394:503-8. https://doi.org/10.1016/j.bbrc.2010.02.171
  13. Kadler KE, Hill A, Canty-Laird EG. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol 2008;20:495-501. https://doi.org/10.1016/j.ceb.2008.06.008
  14. Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 2005;6:56-68. https://doi.org/10.1038/nrm1549
  15. Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 2002;12:9-18. https://doi.org/10.1038/sj.cr.7290105
  16. Yang P, Roy SK. A novel mechanism of FSH regulation of DNA synthesis in the granulosa cells of hamster preantral follicles: involvement of a protein kinase C-mediated MAP kinase 3/1 self-activation loop. Biol Reprod 2006;75:149-57. https://doi.org/10.1095/biolreprod.105.050153
  17. Balko JM, Schwarz LJ, Bhola NE, Kurupi R, Owens P, Miller TW, Gomez H, Cook RS, Arteaga CL. Activation of MAPK pathways due to DUSP4 loss promotes cancer stem cell-like phenotypes in basal-like breast cancer. Cancer Res 2013;73:6346-58. https://doi.org/10.1158/0008-5472.CAN-13-1385
  18. Leonard WJ, Lin JX. Cytokine receptor signaling pathways. J Allergy Clin Immunol 2000;105:877-88. https://doi.org/10.1067/mai.2000.106899
  19. Baumann H, Morella KK, White DW, Dembski M, Bailon PS, Kim H, Lai CF, Tartaglia LA. The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc Natl Acad Sci USA 1996;93:8374-8. https://doi.org/10.1073/pnas.93.16.8374
  20. Peschon JJ, Morrissey PJ, Grabstein KH, Ramsdell FJ, Maraskovsky E, Gliniak BC, Park LS, Ziegler SF, Williams DE, Ware CB, Meyer JD, Davison BL. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 1994;180:1955-60. https://doi.org/10.1084/jem.180.5.1955
  21. Mi S, Lee X, Hu Y, Ji B, Shao Z, Yang W, Huang G, Walus L, Rhodes K, Gong BJ, Miller RH, Pepinsky RB. Death receptor 6 negatively regulates oligodendrocyte survival, maturation and myelination. Nat Med 2011;17:816-21. https://doi.org/10.1038/nm.2373
  22. Versteeg HH, Spek CA, Peppelenbosch MP, Richel DJ. Tissue factor and cancer metastasis: the role of intracellular and extracellular signaling pathways. Mol Med 2004;10:6-11. https://doi.org/10.1007/s00894-003-0157-6
  23. Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT signaling pathway. J Cell Sci 2004;117:1281-3. https://doi.org/10.1242/jcs.00963