DOI QR코드

DOI QR Code

Composition and EC of Nutrient Solution on Growth and Quality of Carrot (Daucus carrota L.) in Hydroponics

당근 수경재배시 생육 및 품질에 미치는 배양액 조성 및 농도

  • Oh, Dong-Gyu (Major of Horticultural Science, Jeju National University) ;
  • Cha, Mi-Kyung (Major of Horticultural Science, Jeju National University) ;
  • Cho, Young-Yeol (Major of Horticultural Science, Jeju National University)
  • 오동규 (제주대학교 원예환경전공) ;
  • 차미경 (제주대학교 원예환경전공) ;
  • 조영열 (제주대학교 원예환경전공)
  • Received : 2017.01.09
  • Accepted : 2017.09.05
  • Published : 2017.10.31

Abstract

Carrot leaves have many nutrients as well as roots, which will increase the demand for carrot leaves in the future. This study was carried out by dividing into two stages: high temperature and low temperature periods, in order to investigate the possibility of cultivation of carrot leaves and the composition and EC of the nutrient solution for growth and quality of carrot leaves. Composition of nutrient solution($NO_3-N:16.0$, $NH_4-N:1.0$, P: 1.0, K: 11.0, Ca: 2.0, Mg: 1.0, $SO_4-S:1.0mM{\cdot}L^{-1}$) developed by analysis of plant. In the high temperature range (From June $29^{th}$ to Sep. $8^{th}$, 2016), the concentration of the developed nutrient solution (JNU) were 1.0, 2.0, 3.0, and $4.0dS{\cdot}m^{-1}$ and the concentration of nutrient solution of Japanese Horticultural Station(JHS) $2.0dS{\cdot}m^{-1}$ was used for comparison. In the low temperature range (From Dec. $31^{st}$, 2015 to Feb. $29^{th}$, 2016), the concentration of the developed nutrient solution 1.0, 2.0, and $3.0dS{\cdot}m^{-1}$ were used. Growth was investigated in root fresh and dry weights, shoot fresh and dry weights, leaf number, and leaf area of carrot. In the high temperature range, the leaf area and shoot fresh and dry weights were good at 1.0 and $2.0dS{\cdot}m^{-1}$. The sugar content of the root was the highest at the EC $2.0dS{\cdot}m^{-1}$, and the chlorophyll content was the highest at the EC $4.0dS{\cdot}m^{-1}$. In the low temperature range, The shoot fresh and dry weights were the highest at EC 1.0 and $2.0dS{\cdot}m^{-1}$. There was no significant difference in sugar content and chlorophyll content. As a result, from the viewpoint of growth and quality of carrot, it is good to cultivate EC 1.0 and $2.0dS{\cdot}m^{-1}$ in high temperature period and low temperature period, but EC $1.0dS{\cdot}m^{-1}$ is economical perspective such as fertilizer input.

당근 잎에는 뿌리와 마찬가지로 다양한 영양성분이 함유되어 있어 앞으로 당근 잎의 필요성이 더욱 증대될 것이다. 본 연구는 수경재배로 온실에서의 당근 잎의 연중 재배 가능성과 생육에 적합한 배양액의 조성 및 농도를 구명하고자 고온기와 저온기로 나누어 수행되었다. 배양액은 식물체내 다량원소의 적정 함량기준으로 개발한 당근 전용배양액($NO_3-N:16.0$, $NH_4-N:1.0$, P:1.0, K:11.0, Ca:2.0, Mg:1.0, $SO_4-S:1.0mM{\cdot}L^{-1}$)을 사용하였다. 배양액은 고온기(2015년 7월 29일부터 9월 8일)에는 개발된 당근 전용 배양액 농도 1.0, 2.0, 3.0, 그리고 $4.0dS{\cdot}m^{-1}$로 처리하였으며, 대조구로 일본원예시험장 배양액농도 $2.0dS{\cdot}m^{-1}$로 처리하여 생육을 비교하였다. 저온기(2015년 12월 31일부터 2016년 2월 29일)에는 개발 배양액 1.0, 2.0, 그리고 $3.0dS{\cdot}m^{-1}$로 처리하여 생육을 비교하였다. 생육조사 항목은 지하부의 생체중과 건물중, 지상부의 생체중과 건물중 및 엽수, 엽면적을 조사하였다. 고온기 재배 기간 동안, 엽면적과 지상부 생체중과 건물중은 배양액 농도 1.0과 $2.0dS{\cdot}m^{-1}$에서 좋았다. 지하부의 당도는 배양액 농도 $2.0dS{\cdot}m^{-1}$에서 가장 높았으며, 엽록소 함량은 배양액 농도 $4.0dS{\cdot}m^{-1}$에서 가장 높았다. 저온기 재배 기간 동안, 지상부 생체중과 건물중은 배양액 농도 1.0과 $2.0dS{\cdot}m^{-1}$에서 가장 높게 나타났다. 지상부에서 당도와 엽록소 함량은 배양액 농도에 따른 유의적인 차이는 없었다. 결과적으로 생육과 품질적인 면에서 볼 때 고온기와 저온기 재배에서는 배양액 농도 1.0과 $2.0dS{\cdot}m^{-1}$에서 좋으나, 비료 투입적인 경영측면에서 배양액 농도 $1.0dS{\cdot}m^{-1}$에서 재배하는 것이 좋은 방법이라 판단되었다.

Keywords

References

  1. Almeida, V.V., E.G. Bonafe, E.C. Muniz, M. Matsushita, N.E. Souza, and J.V. Visentainer. 2009 Optimization of the carrot leaf dehydration aiming at the preservation of omega-3 fatty acids. Quimica Nova 32:1334-1337. https://doi.org/10.1590/S0100-40422009000500042
  2. Arnon D.I. 1949. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:1-15. https://doi.org/10.1104/pp.24.1.1
  3. Choi, K.Y. and Y.B. Lee. 2001. Effect of electrical conductivity of nutrient solution on tipburn incidence of lettce (Lactuca sativa L.) in a plant factory using an artificial light source. Hortic. Environ. Biotech. 42:53-56.
  4. Hur, T.H., Y.B. Park, J.J. Chang, and K.T. Kim. 1997. Effect of weathered sandy shell application on growth, vitamin A and sugar contents of carrot. Korean J. Hortic. Sci. 38:93-97 (in Korean).
  5. Jang, Y.A., J.G. Lee, Y.C. Um, S.Y. Kim, S.S. Oh, and S.H. Cha. 2010. Effects of nutrient solution cooling on fruit setting and yield of paprika in summer hydroponics. Korean J. Hortic. Sci. Technol. 28:58-59 (Abstract).
  6. KOSIS (2015) Open field vegetable cultivation area. 1975-2016.
  7. Lee, J., M.S. Chang, and G.H. Kim. 2015. Quality characteristics and antioxidant activities of organically and conventionally grown carrot. J. Korean Soc. Food cult. 30:778-782 (in Korean). https://doi.org/10.7318/KJFC/2015.30.6.778
  8. Ministry for Food, Agriculture, Forestry and Fisheries. 2009. Greenhouse status of establishment vegetable and results of vegetables production in 2008. Http//www.mifaff.go.kr.
  9. Orzolek, M.D. and R.B. Carrol. 1978. Yield and secondary root growth of carrots as influence by tillage system, cultivation and irrigation. J. American Hortic. Sci. 103:236-239.
  10. Park, Y.B., Y.D. Kim, and J.S. Moon. 2002. The effect of seeding date and mulching method on the growth and yield of spring carrot in Jeju island. J. Subtropical Agri. and Biotech. 18:1-5 (in Korean).
  11. Shin, M.O. and S.J. Bae. 2007. The effect of Daucus carota L. extracts on the fluidity of phospholipid liposomes. J. Korean Soc. Food Sci. Nutr. 30:646-650 (in Korean).