참고문헌
- R. Agarwal, M. Meehan, and D. O'Regan, Fixed point theory Appl., Cambridge Tracts in Mathematics, Cambridge Univ. Press, Cambridge, 2004.
- S. Banach, Sur les operations dans les ensembles abstracts ET leur applications aux equations integrals, Fund. Math., 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
- L. Barbet and K. Nachi, Sequences of contractions and convergence of fixed points, Ninth International Conference Zaragoza-Pau on Applied Mathematics and Statistics, 51-58, Monogr. Semin. Mat. Garca Galdeano, 33, Prensas Univ. Zaragoza, Zaragoza, 2006.
- F. Bonsall, Lectures on some fixed point theorem, Tata Inst. Fundam. Res. Stud. Math, Bombay, 1962.
- L. Brouwer, Uber Abbildungen von Mannigfaltigkeiten, Math. Ann. 70 (1912), 97-115.
- L. J. Ciric, Quasi-contraction in Banach spaces, Publ. Inst. Math. 21(35) (1977), 41-48.
- G. Costakis and A. Manoussos, J-class weighted shifts on the space of bounded sequences of complex numbers, Integral Equations Operator Theory 62 (2008), no. 2, 149-158. https://doi.org/10.1007/s00020-008-1621-6
- G. Costakis and A. Manoussos, J-class operators and hypercyclicity, J. Operator Theory 67 (2012), no. 1, 101- 119.
- M. Erturk and V. Karakaya, A note on n-tuplet fixed point theorems for contractive type mappings in partially ordered metric spaces, J. Inequal. Appl. 2013 (2013), DOI:10.1186/1029-242X-2013-196.
- N. S. Feldman, Perturbations of hypercyclic vectors, J. Math. Anal. Appl. 273 (2002), no. 1, 67-74. https://doi.org/10.1016/S0022-247X(02)00207-X
- G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229-269. https://doi.org/10.1016/0022-1236(91)90078-J
- K. Grosse and G. Erdmann, Universal families and hypercyclic vectors, Bull. Amer. Math. Soc. 36 (1999), no. 3, 345-381. https://doi.org/10.1090/S0273-0979-99-00788-0
- S. Kakutani, A generalization of Tychonoff's fixed point theorem, Duke Math. J. 8 (1968), 457-459.
- R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-78.
- C. Kitai, Invariant closed sets for linear operators, Dissertation, Univ. of Toronto, 1982.
- A. Manoussos, Coarse topological transitivity on open cones and coarsely J-class and D-class operators, J. Math. Anal. Appl. 413 (2014), no. 2, 715-726. https://doi.org/10.1016/j.jmaa.2013.12.038
- S. Mishral, S. L. Singh, and S. Stofile, Stability of common fixed points in uniform spaces, Fixed Point Theory Appl. 2011 (2011), DOI:10.1186/1687-1812-2011-37.
- S. B. Nadler, Sequence of contractions and fixed point, Pacific J. Math. 27 (1968), no. 3, 579-586. https://doi.org/10.2140/pjm.1968.27.579
- A. B. Nasseri, J-class operators on certain Banach spaces, Dissertation, TU Dortmund, 2013.
- H. Poincare, Surless courbes define barles equations differentiate less, J. de Math. 2 (1886), 54-65.
- B. E. Rhoades, A fixed point theorem for generalized Metric space, Internat. J. Math. Sci. 19 (1996), no. 3, 457-460. https://doi.org/10.1155/S0161171296000658
- B. Sadovskii, On a fixed point principle, Funktsional. Anal. i Prilozen. 1 (1967), no. 2, 74-76.
- J. H. Shapiro, Notes on the dynamics of linear operators, www.joelshapiro. org/Pubvit/Downloads/LinDynamics/LynDynamics.html (2016).
- S. Sessa and B. Fisher, On common fixed points of weakly commuting mappings and set-valued mappings, internat. J. Math. & Math. Sci. 9 (1986), no. 2, 323-329. https://doi.org/10.1155/S0161171286000406
- G. Soleimani Rad, S. Shukla, and H. Rahimi, Some relations between n-tuple fixed point and fixed point results, RACSAM (2015); Doi:10.1007/s13398-014-0196-0.
- A. Soliman, Results on n-tupled fixed points in metric spaces with uniform normal structure, Fixed point Theory Appl. 2014 (2014), 168, 16 pp.; DOI:10.1186/1687-1812- 2014-168.