1 |
S. Kakutani, A generalization of Tychonoff's fixed point theorem, Duke Math. J. 8 (1968), 457-459.
|
2 |
R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-78.
|
3 |
C. Kitai, Invariant closed sets for linear operators, Dissertation, Univ. of Toronto, 1982.
|
4 |
A. Manoussos, Coarse topological transitivity on open cones and coarsely J-class and D-class operators, J. Math. Anal. Appl. 413 (2014), no. 2, 715-726.
DOI
|
5 |
S. Mishral, S. L. Singh, and S. Stofile, Stability of common fixed points in uniform spaces, Fixed Point Theory Appl. 2011 (2011), DOI:10.1186/1687-1812-2011-37.
DOI
|
6 |
S. B. Nadler, Sequence of contractions and fixed point, Pacific J. Math. 27 (1968), no. 3, 579-586.
DOI
|
7 |
B. Sadovskii, On a fixed point principle, Funktsional. Anal. i Prilozen. 1 (1967), no. 2, 74-76.
|
8 |
A. B. Nasseri, J-class operators on certain Banach spaces, Dissertation, TU Dortmund, 2013.
|
9 |
H. Poincare, Surless courbes define barles equations differentiate less, J. de Math. 2 (1886), 54-65.
|
10 |
B. E. Rhoades, A fixed point theorem for generalized Metric space, Internat. J. Math. Sci. 19 (1996), no. 3, 457-460.
DOI
|
11 |
J. H. Shapiro, Notes on the dynamics of linear operators, www.joelshapiro. org/Pubvit/Downloads/LinDynamics/LynDynamics.html (2016).
|
12 |
S. Sessa and B. Fisher, On common fixed points of weakly commuting mappings and set-valued mappings, internat. J. Math. & Math. Sci. 9 (1986), no. 2, 323-329.
DOI
|
13 |
G. Soleimani Rad, S. Shukla, and H. Rahimi, Some relations between n-tuple fixed point and fixed point results, RACSAM (2015); Doi:10.1007/s13398-014-0196-0.
DOI
|
14 |
A. Soliman, Results on n-tupled fixed points in metric spaces with uniform normal structure, Fixed point Theory Appl. 2014 (2014), 168, 16 pp.; DOI:10.1186/1687-1812- 2014-168.
DOI
|
15 |
G. Costakis and A. Manoussos, J-class operators and hypercyclicity, J. Operator Theory 67 (2012), no. 1, 101- 119.
|
16 |
L. Barbet and K. Nachi, Sequences of contractions and convergence of fixed points, Ninth International Conference Zaragoza-Pau on Applied Mathematics and Statistics, 51-58, Monogr. Semin. Mat. Garca Galdeano, 33, Prensas Univ. Zaragoza, Zaragoza, 2006.
|
17 |
F. Bonsall, Lectures on some fixed point theorem, Tata Inst. Fundam. Res. Stud. Math, Bombay, 1962.
|
18 |
L. Brouwer, Uber Abbildungen von Mannigfaltigkeiten, Math. Ann. 70 (1912), 97-115.
|
19 |
L. J. Ciric, Quasi-contraction in Banach spaces, Publ. Inst. Math. 21(35) (1977), 41-48.
|
20 |
G. Costakis and A. Manoussos, J-class weighted shifts on the space of bounded sequences of complex numbers, Integral Equations Operator Theory 62 (2008), no. 2, 149-158.
DOI
|
21 |
M. Erturk and V. Karakaya, A note on n-tuplet fixed point theorems for contractive type mappings in partially ordered metric spaces, J. Inequal. Appl. 2013 (2013), DOI:10.1186/1029-242X-2013-196.
DOI
|
22 |
N. S. Feldman, Perturbations of hypercyclic vectors, J. Math. Anal. Appl. 273 (2002), no. 1, 67-74.
DOI
|
23 |
R. Agarwal, M. Meehan, and D. O'Regan, Fixed point theory Appl., Cambridge Tracts in Mathematics, Cambridge Univ. Press, Cambridge, 2004.
|
24 |
S. Banach, Sur les operations dans les ensembles abstracts ET leur applications aux equations integrals, Fund. Math., 3 (1922), 133-181.
DOI
|
25 |
G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229-269.
DOI
|
26 |
K. Grosse and G. Erdmann, Universal families and hypercyclic vectors, Bull. Amer. Math. Soc. 36 (1999), no. 3, 345-381.
DOI
|