Browse > Article
http://dx.doi.org/10.4134/CKMS.c160253

FIXED POINTS OF BSC-SEQUENCES  

Hosseini, Parviz Sadat (Department of Mathematics Payame Noor University)
Yousefi, Bahmann (Department of Mathematics Payame Noor University)
Publication Information
Communications of the Korean Mathematical Society / v.32, no.4, 2017 , pp. 899-908 More about this Journal
Abstract
We call a sequence $(T_n)_n$ of bounded operators on a Banach space X, BSC-Sequence if it is a Cauchy sequence in the strong operator topology and is uniformly bounded below. We determine conditions under which such sequences has a fixed point.
Keywords
orbit of an operator; J-sets; $J^{mix}$-sets; J-class operator;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Kakutani, A generalization of Tychonoff's fixed point theorem, Duke Math. J. 8 (1968), 457-459.
2 R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-78.
3 C. Kitai, Invariant closed sets for linear operators, Dissertation, Univ. of Toronto, 1982.
4 A. Manoussos, Coarse topological transitivity on open cones and coarsely J-class and D-class operators, J. Math. Anal. Appl. 413 (2014), no. 2, 715-726.   DOI
5 S. Mishral, S. L. Singh, and S. Stofile, Stability of common fixed points in uniform spaces, Fixed Point Theory Appl. 2011 (2011), DOI:10.1186/1687-1812-2011-37.   DOI
6 S. B. Nadler, Sequence of contractions and fixed point, Pacific J. Math. 27 (1968), no. 3, 579-586.   DOI
7 B. Sadovskii, On a fixed point principle, Funktsional. Anal. i Prilozen. 1 (1967), no. 2, 74-76.
8 A. B. Nasseri, J-class operators on certain Banach spaces, Dissertation, TU Dortmund, 2013.
9 H. Poincare, Surless courbes define barles equations differentiate less, J. de Math. 2 (1886), 54-65.
10 B. E. Rhoades, A fixed point theorem for generalized Metric space, Internat. J. Math. Sci. 19 (1996), no. 3, 457-460.   DOI
11 J. H. Shapiro, Notes on the dynamics of linear operators, www.joelshapiro. org/Pubvit/Downloads/LinDynamics/LynDynamics.html (2016).
12 S. Sessa and B. Fisher, On common fixed points of weakly commuting mappings and set-valued mappings, internat. J. Math. & Math. Sci. 9 (1986), no. 2, 323-329.   DOI
13 G. Soleimani Rad, S. Shukla, and H. Rahimi, Some relations between n-tuple fixed point and fixed point results, RACSAM (2015); Doi:10.1007/s13398-014-0196-0.   DOI
14 A. Soliman, Results on n-tupled fixed points in metric spaces with uniform normal structure, Fixed point Theory Appl. 2014 (2014), 168, 16 pp.; DOI:10.1186/1687-1812- 2014-168.   DOI
15 G. Costakis and A. Manoussos, J-class operators and hypercyclicity, J. Operator Theory 67 (2012), no. 1, 101- 119.
16 L. Barbet and K. Nachi, Sequences of contractions and convergence of fixed points, Ninth International Conference Zaragoza-Pau on Applied Mathematics and Statistics, 51-58, Monogr. Semin. Mat. Garca Galdeano, 33, Prensas Univ. Zaragoza, Zaragoza, 2006.
17 F. Bonsall, Lectures on some fixed point theorem, Tata Inst. Fundam. Res. Stud. Math, Bombay, 1962.
18 L. Brouwer, Uber Abbildungen von Mannigfaltigkeiten, Math. Ann. 70 (1912), 97-115.
19 L. J. Ciric, Quasi-contraction in Banach spaces, Publ. Inst. Math. 21(35) (1977), 41-48.
20 G. Costakis and A. Manoussos, J-class weighted shifts on the space of bounded sequences of complex numbers, Integral Equations Operator Theory 62 (2008), no. 2, 149-158.   DOI
21 M. Erturk and V. Karakaya, A note on n-tuplet fixed point theorems for contractive type mappings in partially ordered metric spaces, J. Inequal. Appl. 2013 (2013), DOI:10.1186/1029-242X-2013-196.   DOI
22 N. S. Feldman, Perturbations of hypercyclic vectors, J. Math. Anal. Appl. 273 (2002), no. 1, 67-74.   DOI
23 R. Agarwal, M. Meehan, and D. O'Regan, Fixed point theory Appl., Cambridge Tracts in Mathematics, Cambridge Univ. Press, Cambridge, 2004.
24 S. Banach, Sur les operations dans les ensembles abstracts ET leur applications aux equations integrals, Fund. Math., 3 (1922), 133-181.   DOI
25 G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229-269.   DOI
26 K. Grosse and G. Erdmann, Universal families and hypercyclic vectors, Bull. Amer. Math. Soc. 36 (1999), no. 3, 345-381.   DOI