References
- S. Ahmad Ali and S. Nadeem Hasan Rizvi, Certain transformations and summations of basic hypergeometric series, J. Math. Comput. Sci. 5 (2015), no 1, 25-33.
- G. E. Andrews, A Genaral theory of identities of the Rogers-Ramanujan type, Bull. Amer. Math. Soc. 80 (1974), 1033-1052. https://doi.org/10.1090/S0002-9904-1974-13616-5
- G. E. Andrews, An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Nat. Acad. Sci. USA 71 (1974), 4082-4085. https://doi.org/10.1073/pnas.71.10.4082
- G. E. Andrews, Multiple series Rogers-Ramanujan type identities, Pacic J. Math. 114 (1984), no. 2, 267-283. https://doi.org/10.2140/pjm.1984.114.267
- G. E. Andrews, Bailey's transform, lemma, chains and tree, Special functions 2000: current perspective and future directions (Tempe, AZ), 1-22, NATO Sci. Ser. II Math. Phys. Chem., 30, Kluwer Acad. Publ., Dordrecht, 2001
- G. E. Andrews and A. Berkovich, The WP-Bailey tree and its implications, J. Londan Math. Soc. (2) 66 (2002), no. 3, 529-549. https://doi.org/10.1112/S0024610702003617
- W. N. Bailey, Identities of the Rogers-Ramanujan type, Proc. London Math. Soc. 50 (1949), 1-10.
- D. M. Bressoud, Some identities for terminating q-series, Math. Proc. Cambridge Phi- los. Soc. 89 (1981), no. 2, 211-223. https://doi.org/10.1017/S0305004100058114
- R. Y. Denis, On certain summation of q-series and identities of Rogers-Ramanujan type, J. Math. Phys. Sci. 22 (1988), no. 1, 87-99.
- R. Y. Denis, S. N. Singh, and S. P. Singh, Certain transformation and summation formulae for q-series, Ital. J. Pure Appl. Math. 27 (2010), 179-190.
- Q. Foda and Y. H. Quano, Polynomial identities of the Rogers-Ramanujan type, Internat. J. Modern. Phys. A 10 (1995), no. 16, 2291-2315. https://doi.org/10.1142/S0217751X9500111X
- G. Gasper and R. Mizan, Basic Hypergeometric Series, Second Edition. Encyclopedia of Mathematics and Its Applications, 96. Cambridge University Press, Cambridge, 2004.
- Q. Liu and X. Ma, On the characteristic equation of well-poised Bailey chains, Ramanujan J. 18 (2009), no. 3, 351-370. https://doi.org/10.1007/s11139-007-9060-6
- S. N. Singh, Certain partition theorems of Rogers-Ramanujan type, J. Indian Math. Soc. (N.S.) 62 (1996), no. 1-4, 113-120.
- S. N. Singh, On certain summation and transformation formulas for basic hypergeometric series, Int. J. Math. Arch. 2 (2011), no. 12, 2670-2677.
- U. B. Singh, A note on a transformation of Bailey, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 177, 111-116. https://doi.org/10.1093/qmath/45.1.111
- L. J. Slater, A new proof of Rogers's transformations of innite series, Proc. London Math. Soc. (2) 53 (1951), 460-475.
- L. J. Slater, Futher identities of the Rogers-Ramanujan type, Proc. London Math. Soc. 54 (1952), 147-167.
- V. P. Spiridonov, An elliptic incarnation of the Bailey chain, Int. Math. Res. Not. 37 (2002), no. 37, 1945-1977.
- A. Verma and V. K. Jain, Certain summation formulae for q-series, J. Indian Math. Soc. 47 (1983), no. 1-4, 71-85.
- S. O. Warnaar, 50 years of Bailey's lemma, Algebraic combinatorics and applications (Gweinstein, 1999), 333-347, Springer, Berlin, 2001.
- S. O. Warnaar, Extensions of the well-poised and elliptic well-poised Bailey lemma, Indag. Math. New Series 14 (2003), no. 3-4, 571-588. https://doi.org/10.1016/S0019-3577(03)90061-9