DOI QR코드

DOI QR Code

Rifampicin Alleviates Atopic Dermatitis-Like Response in vivo and in vitro

  • Kim, Seung Hyun (Institute of Chronic Disease and College of Pharmacy, Sahmyook University) ;
  • Lee, Ki Man (Institute of Chronic Disease and College of Pharmacy, Sahmyook University) ;
  • Lee, Geum Seon (Institute of Chronic Disease and College of Pharmacy, Sahmyook University) ;
  • Seong, Ju-Won (Institute of Chronic Disease and College of Pharmacy, Sahmyook University) ;
  • Kang, Tae Jin (Institute of Chronic Disease and College of Pharmacy, Sahmyook University)
  • Received : 2017.07.18
  • Accepted : 2017.08.11
  • Published : 2017.11.01

Abstract

Atopic dermatitis (AD) is a common inflammatory skin disorder mediated by inflammatory cells, such as macrophages and mast cells. Rifampicin is mainly used for the treatment of tuberculosis. Recently, it was reported that rifampicin has anti-inflammatory and immune-suppressive activities. In this study, we investigated the effect of rifampicin on atopic dermatitis in vivo and in vitro. AD was induced by treatment with 2, 4-dinitrochlorobenzene (DNCB) in NC/Nga mice. A subset of mice was then treated with rifampicin by oral administration. The severity score and scratching behavior were alleviated in the rifampicin-treated group. Serum immunoglobulin E (IgE) and interleukin-4 (IL-4) levels were also ameliorated in mice treated with rifampicin. We next examined whether rifampicin has anti-atopic activity via suppression of mast cell activation. Rifampicin suppressed the release of ${\beta}$-hexosaminidase and histamine from human mast cell (HMC)-1 cultures stimulated with compound 48/80. Treatment with rifampicin also inhibited secretion of inflammatory mediators, such tumor necrosis factor-${\alpha}$ ($TNF-{\alpha}$) and prostaglandin $D_2$ ($PGD_2$), in mast cells activated by compound 48/80. The mRNA expression of cyclooxygenase 2 (COX-2) was reduced in the cells treated with rifampicin in a concentration-dependent manner. These results suggest that rifampicin can be used to treat atopic dermatitis.

Keywords

References

  1. Ashburn, T. T. and Thor, K. B. (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3, 673-683. https://doi.org/10.1038/nrd1468
  2. Bellahsene, A. and Forsgren, A. (1980) Effect of rifampin on the immune response in mice. Infect. Immun. 27, 15-20.
  3. Bergmann, R. L., Edenharter, G., Bergmann, K. E., Forster, J., Bauer, C. P., Wahn, V., Zepp, F. and Wahn, U. (1998) Atopic dermatitis in early infancy predicts allergic airway disease at 5 years. Clin. Exp.Allergy 28, 965-970. https://doi.org/10.1046/j.1365-2222.1998.00371.x
  4. Bochenek, G. E., Nizankowska, E., Gielicz, A., Swierczynska, M. and Szczeklik, A. (2004) Plasma $9{\alpha},\;11{\beta}-PGF_2,\;a\;PGD_2$ metabolite, as a sensitive marker of mast cell activation by allergen in bronchial asthma. Thorax 59, 459-464. https://doi.org/10.1136/thx.2003.013573
  5. Chang, T. S. and Shiung, Y. Y. (2006) Anti-IgE as a mast cell-stabilizing therapeutic agent. J. Allergy Clin. Immunol. 117, 1203-1212. https://doi.org/10.1016/j.jaci.2006.04.005
  6. Chung, T. H., Kang, T. J., Cho, W. K., Im, G. Y., Lee, G. S., Yang, M. C., Cho, C. W. and Ma, J. Y. (2012) Effectiveness of the novel herbal medicine, KIOM-MA, and its bioconversion product, KIOM-MA128, on the treatment of atopic dermatitis. Evid. Based Complement. Alternat. Med. 2012, 762918.
  7. di Mauro, E., Synder, L., Marino, P., Lamberti, A., Coppo, A. and Tocchini-Valentini, G. P. (1969) Rifampicin sensitivity of the components of DNA-dependent RNA polymerase. Nature 222, 533-537. https://doi.org/10.1038/222533a0
  8. Eisenhut, M. and Wallace, H. (2011) Ion channels in inflammation. Pflugers Arch. 461, 401-421. https://doi.org/10.1007/s00424-010-0917-y
  9. Eule, H., Werner, E., Winsel, K. and Iwainsky, H. (1974) Intermittent chemotherapy of pulmonary tuberculosis using rifampicin and isoniazid for primary treatment: the influence of various factors on the frequency of side-effects. Tubercle 55, 81-89. https://doi.org/10.1016/0041-3879(74)90069-5
  10. Fournier, T., Fadok, V. and Henson, P. M. (1997) Tumor necrosis factor-${\alpha}$ inversely regulates prostaglandin $D_2$ and prostaglandin $E_2$ production in murine macrophages. Synergistic action of cyclic AMP on cyclooxygenase-2 expression and prostaglandin $E_2$ synthesis. J. Biol. Chem. 272, 31065-31072. https://doi.org/10.1074/jbc.272.49.31065
  11. Furue, M., Terao, H., Rikihisa, W., Urabe, K., Kinukawa, N., Nose, Y. and Koga, T. (2003) Clinical dose and adverse effects of topical steroids in daily management of atopic dermatitis. Br. J. Dermatol. 148, 128-133. https://doi.org/10.1046/j.1365-2133.2003.04934.x
  12. Gordon, J. R., Burd, P. R. and Galli, S. J. (1990) Mast cells as a source of multifunctional cytokines. Immunol. Today 11, 458-464. https://doi.org/10.1016/0167-5699(90)90176-A
  13. Jung, J. W., Kim, S. J., Ahn, E. M., Oh, S. R., Lee, H. J., Jeong, J. A. and Lee, J. Y. (2014) Ribes fasciculatum var. chinense attenuated allergic inflammation in vivo and in vitro. Biomol. Ther. (Seoul) 22, 547-552. https://doi.org/10.4062/biomolther.2014.015
  14. Kalesnikoff, J. and Galli, S. J. (2008) New developments in mast cell biology. Nat. Immunol. 9, 1215-1223. https://doi.org/10.1038/ni.f.216
  15. Kim, S. J., Jeong, H. J., Choi, I. Y., Lee, K. M., Park, R. K., Hong, S. H. and Kim, H. M. (2005) Cyclooxygenase-2 inhibitor SC-236 [4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1-pyrazol-1-l] benzenesulfonamide] suppresses nuclear factor-kappaB activation and phosphorylation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and c-Jun N-terminal kinase in human mast cell line cells. J. Pharmacol. Exp. Ther. 314, 27-34. https://doi.org/10.1124/jpet.104.082792
  16. Kim, S. K., Kim, Y. M., Yeum, C. E., Jin, S. H., Chae, G. T. and Lee, S. B. (2009) Rifampicin inhibits the LPS-induced expression of Toll-like receptor 2 via the suppression of $NF-{\kappa}B$ DNA-binding activity in RAW 264.7 Cells. Korean J. Physiol. Pharmacol. 13, 475-482. https://doi.org/10.4196/kjpp.2009.13.6.475
  17. Kwon, S. H., Ma, S. X., Ko, Y. H., Seo, J. Y., Lee, B. R., Lee, T. H., Kim, S. Y., Lee, S. Y. and Jang, C. G. (2016) Vaccinium bracteatum Thunb. exerts anti-inflammatory activity by inhibiting $NF-{\kappa}B$ activation in BV-2 microglial cells. Biomol.Ther. (Seoul) 24, 543-551. https://doi.org/10.4062/biomolther.2015.205
  18. Leung, D. Y., Boguniewicz, M., Howell, M. D., Nomura, I. and Hamid, Q. A. (2004) New insights into atopic dermatitis. J. Clin. Invest. 113, 651-657. https://doi.org/10.1172/JCI21060
  19. Lim, S. C., Lee, K. M. and Kang, T. J. (2015) Chitin from cuttlebone activates inflammatory cells to enhance the cell migration. Biomol. Ther. (Seoul) 23, 333-338. https://doi.org/10.4062/biomolther.2015.062
  20. Loeffler, A. M. (1999) Uses of rifampin for infections other than tuberculosis. Pediatr. Infect. Dis. J. 18, 631-632 https://doi.org/10.1097/00006454-199907000-00012
  21. Matsuda, H., Watanabe, N., Geba, G. P., Sperl, J., Tsudzuki, M., Hiroi, J., Matsumoto, M., Ushio, H., Saito, S., Askenase, P. W. and Ra, C. (1997) Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice. Int. Immunol. 9, 461-466. https://doi.org/10.1093/intimm/9.3.461
  22. Mlambo, G. and Sigola, L. B. (2003) Rifampicin and dexamethasone have similar effects on macrophage phagocytosis of zymosan, but differ in their effects on nitrite and TNF-${\alpha}$ production. Int. Immunopharmacol. 3, 513-522. https://doi.org/10.1016/S1567-5769(03)00022-5
  23. Nilsson, B. S. (1971) Rifampicin: an immunosuppressant? Lancet 2, 374.
  24. Park, J. Y., Lim, M. S., Kim, S. I., Lee, H. J., Kim, S. S., Kwon, Y. S. and Chun, W. (2016) Quercetin-3-O-${\beta}$-D-glucuronide suppresses lipopolysaccharide-induced JNK and ERK phosphorylation in LPS-challenged RAW264.7 cells. Biomol. Ther. (Seoul) 24, 610-615. https://doi.org/10.4062/biomolther.2016.026
  25. Paunescu, E. (1970) In vivo and in vitro suppression of humoral and cellular immunological response by rifampicin. Nature 228, 1188-1190. https://doi.org/10.1038/2281188a0
  26. Pearce, F. L. (1985) Calcium and mast cell activation. Br. J. Clin. Pharmacol. 20, 267S-274S. https://doi.org/10.1111/j.1365-2125.1985.tb02812.x
  27. Petersen, L. J., Mosbech, H. and Skov, P. S. (1996) Allergen-induced histamine release in intact human skin in vivo assessed by skin microdialysis technique: characterization of factors influencing histamine releasability. J. Allergy Clin. Immunol. 97, 672-679. https://doi.org/10.1016/S0091-6749(96)70313-5
  28. Schwartz, L. B. and Austen, K. F. (1980) Enzymes of the mast cell granule. J. Invest. Dermatol. 74, 349-353. https://doi.org/10.1111/1523-1747.ep12543620
  29. Schwartz, L. B., Austen, K. F. and Wasserman, S. I. (1979) Immunologic release of beta-hexosaminidase and beta-glucuronidase from purified rat serosal mast cells. J. Immunol. 123, 1445-1450.
  30. Sidbury, R. and Hanifin, J. M. (2000) Systemic therapy of atopic dermatitis. Clin. Exp. Dermatol. 25, 559-566. https://doi.org/10.1046/j.1365-2230.2000.00697.x
  31. Sleigh, S. H. and Barton, C. L. (2010) Repurposing strategies for therapeutics. Pharmaceut. Med. 24, 151-159.
  32. Suto, H., Matsuda, H., Mitsuishi, K., Hira, K., Uchida, T., Unno, T., Ogawa, H. and Ra, C. (1999) NC/Nga mice: a mouse model for atopic dermatitis. Int. Arch. Allergy Immunol. 120 Suppl 1, 70-75. https://doi.org/10.1159/000053599
  33. Tsai, M. J. and Saunders, G. F. (1973) Action of rifamycin derivatives on RNA polymerase of human leukemic lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 70, 2072-2076. https://doi.org/10.1073/pnas.70.7.2072
  34. Tsankov, N. and Angelova, I. (2003) Rifampin in dermatology. Clin. Dermatol. 21, 50-55. https://doi.org/10.1016/S0738-081X(02)00328-0
  35. Tsudzuki, M., Watanabe, N., Wada, A., Nakane, Y., Hiroi, J. and Matsuda, H. (1997) Genetic analyses for dermatitis and IgE hyperproduction in the NC/Nga mouse. Immunogenetics 47, 88-90. https://doi.org/10.1007/s002510050330
  36. Umeda, K., Noro, Y., Murakami, T., Tokime, K., Sugisaki, H., Yamanaka, K., Kurokawa, I., Kuno, K., Tsutsui, H., Nakanishi, K. and Mizutani, H. (2006) A novel acoustic evaluation system of scratching in mouse dermatitis: rapid and specific detection of invisibly rapid scratch in an atopic dermatitis model mouse. Life Sci. 79, 2144-2150. https://doi.org/10.1016/j.lfs.2006.07.010
  37. Wang, W., Zhou, Q., Liu, L. and Zou, K. (2012) Anti-allergic activity of emodin on IgE-mediated activation in RBL-2H3 cells. Pharmacol. Rep. 64, 1216-1222. https://doi.org/10.1016/S1734-1140(12)70917-9
  38. Wang, X., Grace, P. M., Pham, M. N., Cheng, K., Strand, K. A., Smith, C., Li, J., Watkins, L. R. and Yin, H. (2013) Rifampin inhibits Toll-like receptor 4 signaling by targeting myeloid differentiation protein 2 and attenuates neuropathic pain. FASEB J. 27, 2713-2722. https://doi.org/10.1096/fj.12-222992
  39. Wehrli, W., Knusel, F., Schmid, K. and Staehelin, M. (1968) Interaction of rifamycin with bacterial RNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 61, 667-673. https://doi.org/10.1073/pnas.61.2.667
  40. Ziglam, H. M., Daniels, I. and Finch, R. G. (2004) Immunomodulating activity of rifampicin. J. Chemother. 16, 357-361. https://doi.org/10.1179/joc.2004.16.4.357

Cited by

  1. Repositioned Drugs for Inflammatory Diseases such as Sepsis, Asthma, and Atopic Dermatitis vol.28, pp.3, 2017, https://doi.org/10.4062/biomolther.2020.001
  2. Different macrophage polarization between drug-susceptible and multidrug-resistant pulmonary tuberculosis vol.20, pp.None, 2017, https://doi.org/10.1186/s12879-020-4802-9
  3. Anti-Inflammatory Effects of Lagerstroemia ovalifolia Teijsm. & Binn. in TNFα/IFNγ-Stimulated Keratinocytes vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/2439231
  4. Air-Spun Silk-Based Micro-/Nanofibers and Thin Films for Drug Delivery vol.22, pp.17, 2021, https://doi.org/10.3390/ijms22179588