References
- Adams, J. C. and Tucker, R. P. (2000) The thrombospondin type 1 repeat (TSR) superfamily: diverse proteins with related roles in neuronal development. Dev. Dyn. 218, 280-299. https://doi.org/10.1002/(SICI)1097-0177(200006)218:2<280::AID-DVDY4>3.0.CO;2-0
- Beil, M., Micoulet, A., von Wichert, G., Paschke, S., Walther, P., Omary, M. B., Van Veldhoven, P. P., Gern, U., Wolff-Hieber, E., Eggermann, J.,Waltenberger, J., Adler, G., Spatz, J. and Seufferlein, T. (2003) Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nat. Cell Biol. 5, 803-811. https://doi.org/10.1038/ncb1037
- Boguslawski, G., Lyons, D., Harvey, K. A., Kovala, A. T. and English, D. (2000) Sphingosylphosphorylcholine induces endothelial cell migration and morphogenesis. Biochem. Biophys. Res. Commun. 272, 603-609. https://doi.org/10.1006/bbrc.2000.2822
- Calcerrada, M. C., Miguel, B. G., Catalan, R. E. and Martinez, A. M. (1999) Sphingosylphosphorylcholine increases calcium concentration in isolated brain nuclei. Neurosci. Res. 33, 229-232. https://doi.org/10.1016/S0168-0102(99)00004-8
- Campone, M., Valo, I., Jezequel, P., Moreau, M., Boissard, A., Campion, L., Loussouarn, D., Verriele, V., Coqueret, O. and Guette, C. (2015) Prediction of recurrence and survival for triple-negative breast cancer (TNBC) by a protein signature in tissue samples. Mol. Cell Proteomics 14, 2936-2946. https://doi.org/10.1074/mcp.M115.048967
- Cao, Z., Shang, B., Zhang, G., Miele, L., Sarkar, F. H., Wang, Z. and Zhou, Q. (2013) Tumor cell-mediated neovascularization and lymphangiogenesis contrive tumor progression and cancer metastasis. Biochim. Biophys. Acta 1836, 273-286.
- De, U., Kundu, S., Patra, N., Ahn, M. Y., Ahn, J. H., Son, J. Y., Yoon, J. H., Moon, H. R., Lee, B. M. and Kim, H. S. (2015) A new histone deacetylase inhibitor, MHY219, inhibits the migration of human prostate cancer cells via HDAC1. Biomol. Ther. (Seoul) 23, 434-441. https://doi.org/10.4062/biomolther.2015.026
- Eccles, S. A. and Welch, D. R. (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369, 1742-1757. https://doi.org/10.1016/S0140-6736(07)60781-8
- Farhan, H. and Rabouille, C. (2011) Signalling to and from the secretory pathway. J. Cell Sci. 124, 171-180. https://doi.org/10.1242/jcs.076455
- Firlej, V., Mathieu, J. R., Gilbert, C., Lemonnier, L., Nakhle, J., Gallou-Kabani, C., Guarmit, B., Morin, A., Prevarskaya, N., Delongchamps, N. B. and Cabon, F. (2011) Thrombospondin-1 triggers cell migration and development of advanced prostate tumors. Cancer Res. 71, 7649-7658. https://doi.org/10.1158/0008-5472.CAN-11-0833
- Fosu-Mensah, N., Peris, M.S., Weeks, H.P., Cai, J. and Westwell, A.D. (2015) Advances in small-molecule drug discovery for triple-negative breast cancer. Future Med. Chem. 7, 2019-2039. https://doi.org/10.4155/fmc.15.129
- Foulkes, W. D., Smith, W. D. and Reis-Filho, J. S. (2010) Triple-negative breast cancer. N. Engl. J. Med. 363, 1938-1948. https://doi.org/10.1056/NEJMra1001389
- Ghajar, C. M., Peinado, H., Mori, H., Matei, I. R., Evason, K. J., Brazier, H., Almeida, D., Koller, A., Hajjar, K. A., Stainier, D. Y., Chen, E. I., Lyden, D. and Bissell, M. J. (2013) The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807-817. https://doi.org/10.1038/ncb2767
- Goswami, C. P. and Nakshatri, H. (2014) PROGgeneV2: enhancements on the existing database. BMC Cancer 14, 970. https://doi.org/10.1186/1471-2407-14-970
- Horiguchi, H., Yamagata, S., Rong Qian, Z., Kagawa, S. and Sakashita, N. (2013) Thrombospondin-1 is highly expressed in desmoplastic components of invasive ductal carcinoma of the breast and associated with lymph node metastasis. J. Med. Invest. 60, 91-96. https://doi.org/10.2152/jmi.60.91
- Ignatov, A., Lintzel, J., Hermans-Borgmeyer, I., Kreienkamp, H. J., Joost P., Thomsen, S., Methner, A. and Schaller, H. C. (2003) Role of the G-protein-coupled receptor GPR12 as highaffinityreceptor for sphingosylphosphorylcholine and its expression and functionin brain development. J. Neurosci. 23, 907-914. https://doi.org/10.1523/JNEUROSCI.23-03-00907.2003
- Im, D. S. (2003) Linking Chinese medicine and G-protein-coupled receptors. Trends Pharmacol. Sci. 24, 2-4. https://doi.org/10.1016/S0165-6147(02)00012-3
- Jayachandran, A., Anaka, M., Prithviraj, P., Hudson, C., McKeown, S. J., Lo, P. H., Vella, L. J., Goding, C. R., Cebon, J. and Behren, A. (2014) Thrombospondin 1 promotes an aggressive phenotype through epithelial-to-mesenchymal transition in human melanoma. Oncotarget 5, 5782-5797.
- Jeon, E. S., Moon, H. J., Lee, M. J., Song, H. Y., Kim, Y. M., Bae, Y. C., Jung, J. S. and Kim, J. H. (2006) Sphingosylphosphorylcholine induces differentiation of human mesenchymal stem cells into smooth-muscle-like cells through a TGF-beta-dependent mechanism. J. Cell Sci. 119, 4994-5005. https://doi.org/10.1242/jcs.03281
- Jeong, Y. H., Park, J. S., Kim, D. H. and Kim, H.-S. (2016) Lonchocarpine increases Nrf2/ARE-mediated antioxidant enzyme expression by modulating AMPK and MAPK signaling in brain astrocytes. Biomol. Ther. (Seoul) 24, 581-588. https://doi.org/10.4062/biomolther.2016.141
- Jimenez, B., Volpert, O. V., Crawford, S. E., Febbraio, M., Silverstein, R. L. and Bouck, N. (2000) Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat. Med. 6, 41-48. https://doi.org/10.1038/71517
- Kalluri, R. and Weinberg, R. A. (2009) The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420-1428. https://doi.org/10.1172/JCI39104
-
Kim, E. J., Kim, H. J., Park, M. K., Kang, G. J., Byun, H. J., Lee, H. and Lee, C. H. (2015) Cardamonin suppresses TGF-
${\beta}1$ -induced epithelial mesenchymal transition via restoring protein phosphatase 2A expression. Biomol. Ther. (Seoul) 23, 141-148. https://doi.org/10.4062/biomolther.2014.117 - Kim, H. J., Choi, W. J. and Lee, C. H. (2015) Phosphorylation and reorganization of keratin networks: Implications for carcinogenesis and epithelial mesenchymal transition. Biomol. Ther. (Seoul) 23, 301-312. https://doi.org/10.4062/biomolther.2015.032
- Kim, H. J., Kang, G. J., Kim, E. J., Park, M. K., Byun, H. J., Nam, S., Lee, H. and Lee, C. H. (2016) Novel effects of sphingosylphosphorylcholine on invasion of breast cancer: Involvement of matrix metalloproteinase-3 secretion leading to WNT activation. Biochim. Biophys. Acta 1862, 1533-1543. https://doi.org/10.1016/j.bbadis.2016.05.010
- Kurokawa, T., Yumiya, Y., Fujisawa, H., Shirao, S., Kashiwagi, S., Sato, M., Kishi, H., Miwa, S., Mogami, K., Kato, S., Akimura, T., Soma, M., Ogasawara, K., Ogawa, A., Kobayashi, S. and Suzuki, M. (2009) Elevated concentrations of sphingosylphosphorylcholine in cerebrospinal fluid after subarachnoid hemorrhage: a possible role as a spasmogen. J. Clin. Neurosci. 16, 1064-1068. https://doi.org/10.1016/j.jocn.2009.01.010
- Lawler, J. W., Slayter, H. S. and Coligan, J. E. (1978) Isolation and characterization of a high molecular weight glycoprotein from human blood platelets. J. Biol. Chem. 253, 8609-8616.
- Lee, H. Y., Lee, S. Y., Kim, S. D., Shim, J. W., Kim, H. J., Jung, Y. S., Kwon, J. Y., Baek, S. H., Chung, J. and Bae, Y. S. (2011) Sphingosylphosphorylcholine stimulates CCL2 production from human umbilical vein endothelial cells. J. Immunol. 186, 4347-4353. https://doi.org/10.4049/jimmunol.1002068
- Lim, S. C., Lee, K. M. and Kang, T. J. (2015) Chitin from cuttlebone activates inflammatory cells to enhance the cell migration. Biomol. Ther. (Seoul) 23, 333-338. https://doi.org/10.4062/biomolther.2015.062
- Meyer zu Heringdorf, D., Himmel, H. M. and Jakobs, K. H. (2002) Sphingosylphosphorylcholine-biological functions and mechanisms of action. Biochim. Biophys. Acta 1582, 178-189. https://doi.org/10.1016/S1388-1981(02)00154-3
- Murphy-Ullrich, J. E. and Poczatek, M. (2000) Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev. 11, 59-69. https://doi.org/10.1016/S1359-6101(99)00029-5
- Nieto, M. A., Huang, R. Y., Jackson, R. A. and Thiery, J. P. (2016) EMT: 2016. Cell 166, 21-45. https://doi.org/10.1016/j.cell.2016.06.028
- Nixon, G. F., Mathieson, F. A. and Hunter, I. (2008) The multi-functional role of sphingosylphosphorylcholine. Prog. Lipid Res. 47, 62-75. https://doi.org/10.1016/j.plipres.2007.11.001
- Park, K. S., Kim, H. K, Lee, J. H., Choi, Y. B., Park, S. Y., Yang, S. H., Kim, S. Y. and Hong, K. M. (2010) Transglutaminase 2 as a cisplatin resistance marker in non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 136, 493-502. https://doi.org/10.1007/s00432-009-0681-6
- Park, M. K., You, H. J., Lee, H. J., Kang, J. H., Oh, S. H., Kim, S. Y. and Lee, C. H. (2013) Transglutaminase-2 induces N-cadherin expression in TGF-beta1-induced epithelial mesenchymal transition via c-Jun-N-terminal kinase activation by protein phosphatase 2A down-regulation. Eur. J. Cancer 49, 1692-1705. https://doi.org/10.1016/j.ejca.2012.11.036
- Park, M. K., Park, S., Kim, H. J., Kim, E. J., Kim, S. Y., Kang, G. J., Byun, H. J., Kim, S. H., Lee, H. and Lee, C. H. (2016) Novel effects of FTY720 on perinuclear reorganization of keratinnetwork induced by sphingosylphosphorylcholine: Involvement of protein phosphatase 2A and G-protein-coupled receptor-12. Eur. J. Pharmacol. 775, 86-95. https://doi.org/10.1016/j.ejphar.2016.02.024
- Retraction (2005) Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4. J. Biol. Chem. 280, 43280.
- Retraction (2006) Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nat. Cell Biol. 8, 299.
- Schlyer, S. and Horuk, R. (2006) I want a new drug: G-protein-coupled receptors in drug development. Drug Discov. Today 11, 481-493. https://doi.org/10.1016/j.drudis.2006.04.008
-
Schultz-Cherry, S., Lawler, J. and Murphy-Ullrich, J. E. (1994) The type 1 repeats of thrombospondin 1 activate latent transforming growth factor-
${\beta}$ . J. Biol. Chem. 269, 26783-26788. - Seufferlein, T. and Rozengurt, E. (1995) Sphingosylphosphorylcholine rapidly induces tyrosine phosphorylation of p125FAK and paxillin, rearrangement of the actin cytoskeleton and focal contact assembly. Requirement of p21rho in the signaling pathway. J. Biol. Chem. 270, 24343-24351. https://doi.org/10.1074/jbc.270.41.24343
- Shin, S. and Blenis, J. (2010) ERK2/Fra1/ZEB pathway induces epithelial-to-mesenchymal transition. Cell Cycle 9, 2483-2484. https://doi.org/10.4161/cc.9.13.12270
- Shin, S., Dimitri, C. A., Yoon, S. O., Dowdle, W. and Blenis, J. (2010) ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol. Cell 38, 114-127. https://doi.org/10.1016/j.molcel.2010.02.020
- Sid, B., Langlois, B., Sartelet, H., Bellon, G., Dedieu, S. and Martiny, L. (2008) Thrombospondin-1 enhances human thyroid carcinoma cell invasion through urokinase activity. Int. J. Biochem. Cell Biol. 40, 1890-1900. https://doi.org/10.1016/j.biocel.2008.01.023
- Sorensen, K. P., Thomassen, M., Tan, Q., Bak, M., Cold, S., Burton, M., Larsen, M. J. and Kruse, T. A. (2013) Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer. Breast Cancer Res. Treat. 142, 529-536. https://doi.org/10.1007/s10549-013-2776-7
- Tiwari, N., Gheldof, A., Tatari, M. and Christofori, G. (2012) EMT as the ultimate survival mechanism of cancer cells. Semin. Cancer Biol. 22, 194-207. https://doi.org/10.1016/j.semcancer.2012.02.013
- Valastyan, S. and Weinberg, R. A. (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275-292. https://doi.org/10.1016/j.cell.2011.09.024
- Wang, X., Zhu, Y., Ma, Y., Wang, J., Zhang, F., Xia, Q. and Fu, D. (2013) The role of cancer stem cells in cancer metastasis: new perspective and progress. Cancer Epidemiol. 37, 60-63. https://doi.org/10.1016/j.canep.2012.07.007
- Wang, Y., Klijn, J. G., Zhang, Y., Sieuwerts, A. M, Look, M. P., Yang, F., Talantov, D., Timmermans, M., Meijer-van Gelder, M. E., Yu, J., Jatkoe, T., Berns, E. M., Atkins, D. and Foekens, J. A. (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671-679. https://doi.org/10.1016/S0140-6736(05)70933-8
- Xiao, Y. J., Schwartz, B., Washington, M., Kennedy, A., Webster, K., Belinson, J. and Xu, Y. (2001) Electrospray ionization mass spectrometry analysis of lysophospholipids in human ascitic fluids: comparison of the lysophospholipid contents in malignant vs nonmalignant ascitic fluids. Anal. Biochem. 290, 302-313. https://doi.org/10.1006/abio.2001.5000
- Xu, Y. (2002) Sphingosylphosphorylcholine and lysophosphatidylcholine: G protein-coupled receptors and receptor-mediated signal transduction. Biochim. Biophys. Acta 1582, 81-88. https://doi.org/10.1016/S1388-1981(02)00140-3
- Xu, Y., Zhu, K., Hong, G., Wu, W., Baudhuin, L. M., Xiao, Y. and Damron, D. S., (2000) Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nat. Cell Biol. 2, 261-267. https://doi.org/10.1038/35010529
- Yang, C. R., Wei, Y., Qi, S. T., Chen L., Zhang, Q. H., Ma J. Y., Luo Y. B., Wang Y. P., Hou, Y., Schatten, H., Liu, Z. H. and Sun, Q. Y. (2012) The G protein coupled receptor 3 is involved in cAMP and cGMP signaling and maintenance of meiotic arrest in porcine oocytes, PLoS ONE 7, e38807. https://doi.org/10.1371/journal.pone.0038807
- Yee, K. O., Connolly, C. M., Duquette, M., Kazerounian, S., Washington, R. and Lawler, J. (2009) The effect of thrombospondin-1 on breast cancer metastasis. Breast Cancer Res. Treat. 114, 85-96. https://doi.org/10.1007/s10549-008-9992-6
- Zheng, M., Zhang, X., Min, C., Choi, B. G., Oh, I. J. and Kim, K. M. (2016) Functional regulation of dopamine D3 receptor through interaction with PICK1. Biomol. Ther. (Seoul) 24, 475-481. https://doi.org/10.4062/biomolther.2016.015
- Zhu, K., Baudhuin, L. M., Hong, G., Williams, F. S., Cristina, K. L., Kabarowski, J. H., Witte, O. N. and Xu, Y. (2001) Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4. J. Biol. Chem. 276, 41325-41335. https://doi.org/10.1074/jbc.M008057200
Cited by
- Overexpression of GRK3, Promoting Tumor Proliferation, Is Predictive of Poor Prognosis in Colon Cancer vol.2017, pp.1875-8630, 2017, https://doi.org/10.1155/2017/1202710
- COMPARATIVE ANALYSIS OF THE EXOSOMAL CARGO OF THE ESTROGEN-RESISTANT BREAST CANCER CELLS vol.17, pp.4, 2018, https://doi.org/10.21294/1814-4861-2018-17-4-36-40
- YDJC Induces Epithelial-Mesenchymal Transition via Escaping from Interaction with CDC16 through Ubiquitination of PP2A vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/3542537
- Role of Sphingosylphosphorylcholine in Tumor and Tumor Microenvironment vol.11, pp.11, 2017, https://doi.org/10.3390/cancers11111696