References
- Ahmad, S. S., Akhtar, S., Jamal, Q. M., Rizvi, S. M., Kamal, M. A., Khan, M. K. and Siddiqui, M. H. (2016) Multiple targets for the management of Alzheimer's disease. CNS Neurol. Disord. Drug Targets 15, 1279-1289. https://doi.org/10.2174/1871527315666161003165855
-
Bernado A. and Minghetti L. (2006) PPAR-
${\gamma}$ agonists as regulators of microglial activation and brain inflammation. Curr. Pharm. Des. 12, 93-109. https://doi.org/10.2174/138161206780574579 -
Bouhlel, M. A., Derudas, B., Rigamonti, E., Dievart, R., Brozek, J., Haulon, S. Zawadzki, C., Jude, B., Torpier, G., Marx, N., Staels, B. and Chinetti-Gbaguidi, G. (2007) PPAR
${\gamma}$ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab. 6, 137-143. https://doi.org/10.1016/j.cmet.2007.06.010 - Cherry, J. D., Olschowka, J. A. and O'Banion, M. K. (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation 11, 98. https://doi.org/10.1186/1742-2094-11-98
- Chien, S. T., Shi, M. D., Lee, Y. C., Te, C. C. and Shih, Y. W. (2015) Galangin, a novel dietary flavonoid, attenuates metastatic feature via PKC/ERK signaling pathway in TPA-treated liver cancer HepG2 cells. Cancer Cell Int. 15, 15. https://doi.org/10.1186/s12935-015-0168-2
- Chung, J. H., Seo, A. Y., Chung, S. W., Kim, M. K., Leeuwenburgh, C., Yu, B. P. and Chung, H. Y. (2008) Molecular mechanism of PPAR in the regulation of age-related inflammation. Ageing Res. Rev. 7, 126-136. https://doi.org/10.1016/j.arr.2008.01.001
- Cunningham, C., Campion, S., Teeling, J., Felton, L. and Perry, V. H. (2007) The sickness behaviour and CNS inflammatory mediator profile induced by systemic challenge of mice with synthetic double-stranded RNA (poly I:C). Brain Behav. Immun. 21, 490-502. https://doi.org/10.1016/j.bbi.2006.12.007
- Cushnie, T. P., Hamilton, V. E., Chapman, D. G., Taylor, P. W. and Lam, A. J. (2007) Aggregation of Staphylococcus aureus following treatment with the antibacterial flavonol galangin. J. Appl. Microbiol. 103, 1562-1567. https://doi.org/10.1111/j.1365-2672.2007.03393.x
-
Descamps, O., Spilman, P., Zhang, Q., Libeu, C. P., Poksay, K., Gorostiza, O., Campagna, J., Jagodzinska, B., Bredesen, D. E. and John, V. (2013) A
${\beta}$ PP-selective BACE inhibitors (ASBI): novel class of therapeutic agents for alzheimer's disease. J. Alzheimers Dis. 37, 343-355. https://doi.org/10.3233/JAD-130578 - Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C. and Gage, F. H. (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918-934. https://doi.org/10.1016/j.cell.2010.02.016
- Graeber, M. B. and Streit, W. J. (2010) Microglia: biology and pathology. Acta. Neuropathol. 119, 89-105. https://doi.org/10.1007/s00401-009-0622-0
- Guo, A. J., Xie, H. Q., Choi, R. C., Zheng, K. Y., Bi, C. W., Xu, S. L., Dong, T. T. and Tsim, K. W. (2010) Galangin, a flavonol derived from Rhizoma Alpiniae Officinarum, inhibits acetylcholinesterase activity in vitro. Chem. Biol. Interact. 187, 246-248. https://doi.org/10.1016/j.cbi.2010.05.002
- Heo, M. Y., Sohn, S. J. and Au, W. W. (2001) Anti-genotoxicity of galangin as a cancer chemopreventive agent candidate. Mutat. Res. 488, 135-150. https://doi.org/10.1016/S1383-5742(01)00054-0
- Honmore, V. S., Kandhare, A. D., Kadam, P. P., Khedkar, V. M., Sarkar, D., Bodhankar, S. L., Zanwar, A. A., Rojatkar, S. R. and Natu, A. D. (2016) Isolates of Alpinia officinarum Hance as COX-2 inhibitors: Evidence from anti-inflammatory, antioxidant and molecular docking studies. Int. Immunopharmacol. 33, 8-17. https://doi.org/10.1016/j.intimp.2016.01.024
- Hoogland, I. C., Houbolt, C., van Westerloo, D. J., van Gool, W. A. and van de Beek, D. (2015) Systemic inflammation and microglial activation: systematic review of animal experiments. J. Neuroinflammation 12, 114. https://doi.org/10.1186/s12974-015-0332-6
-
Huh, J., Jung, I., Choi, J., Baek, Y., Lee, J., Park, D. and Choi, D. (2013) The natural flavonoid galangin inhibits osteoclastic bone destruction and osteoclastogenesis by suppressing
$NF-{\kappa}B$ in collagen-induced arthritis and bone marrow-derived macrophages. Eur. J. Pharmacol. 698, 57-66. https://doi.org/10.1016/j.ejphar.2012.08.013 - Jaganathan, S. K. and Mandal, M. (2009) Antiproliferative effects of honey and of its polyphenols: a review. J. Biomed. Biotechnol. 2009, 830616.
- Jeong, Y. H., Park, J. S., Kim, D. H., Kang, J. L. and Kim, H. S. (2017) Anti-inflammatory mechanism of lonchocarpine in LPS- or poly(I:C)-induced neuroinflammation. Pharmacol. Res. 119, 431-442. https://doi.org/10.1016/j.phrs.2017.02.027
-
Kim, W. K., Hwang, S. Y., Oh, E. S., Pia, H. Z., Kim, K. W. and Han, I. O. (2004) TGF-
${\beta}1$ represses activation and resultant death of microglia via inhibition of phosphatidylinositol 3-kinase activity. J. Immunol. 172, 7015-7023. https://doi.org/10.4049/jimmunol.172.11.7015 -
Lee, E. J., Ko, H. M., Jeong, Y. H., Park, E. M. and Kim, H. S. (2015)
${\beta}$ -Lapachone suppresses neuroinflammation by modulating the expression of cytokines and matrix metalloproteinases in activated microglia. J. Neuroinflammation 12, 133. https://doi.org/10.1186/s12974-015-0355-z - Li, S., Wu, C., Zhu, L., Gao, J., Fang, J., Li, D., Fu, M., Liang, R., Wang, L., Cheng, M. and Yang, H. (2012) By improving regional cortical blood flow, attenuating mitochondrial dysfunction and sequential apoptosis galangin acts as a potential neuroprotective agent after acute ischemic stroke. Molecules 17, 13403-13423. https://doi.org/10.3390/molecules171113403
-
Liu, Y. N., Zha, W. J., Ma, Y., Chen, F. F., Zhu, W., Ge, A., Zeng, X. N. and Huang, M. (2015) Galangin attenuates airway remodelling by inhibiting TGF-
${\beta}1$ -mediated ROS generation and MAPK/Akt phosphorylation in asthma. Sci. Rep. 5, 11758. https://doi.org/10.1038/srep11758 - Meyer, J. J., Afolayan, A. J., Taylor, M. B. and Erasmus, D. (1997) Antiviral activity of galangin isolated from the aerial parts of Helichrysum aureonitens. J. Ethnopharmacol. 56, 165-169. https://doi.org/10.1016/S0378-8741(97)01514-6
-
Moynagh, P. N. (2005) TLR signalling and activation of IRFs: revisiting old friends from the
$NF-{\kappa}B$ pathway. Trends Immunol. 26, 469-476. https://doi.org/10.1016/j.it.2005.06.009 - Qin, L., Wu, X., Block, M. L., Liu, Y., Breese, G. R., Hong, J. S., Knapp, D. J. and Crews, F. T. (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55, 453-462. https://doi.org/10.1002/glia.20467
- Rüweler, M., Anker, A., Gülden, M., Maser, E. and Seibert, H. (2008) Inhibition of peroxide-induced radical generation by plant polyphenols in C6 astroglioma cells. Toxicol. In vitro 22, 1377-1381. https://doi.org/10.1016/j.tiv.2008.02.019
- Saijo, K., Crotti, A. and Glass, C. K. (2013) Regulation of microglia activation and deactivation by nuclear receptors. Glia 61, 104-111. https://doi.org/10.1002/glia.22423
- Sastre, M., Dewachter, I., Landreth, G. E., Willson, T. M., Klockgether, T., van Leuven, F. and Heneka, M. T. (2003) Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. J. Neurosci. 23, 9796-9804. https://doi.org/10.1523/JNEUROSCI.23-30-09796.2003
- Saponaro, C., Cianciulli, A., Calvello, R., Dragone, T., Iacobazzi, F. and Panaro, M. A. (2012) The PI3K/Akt pathway is required for LPS activation of microglial cells. Immunopharmacol. Immunotoxicol. 34, 858-865. https://doi.org/10.3109/08923973.2012.665461
- Sen, G. C. and Sarkar, S. N. (2005) Transcriptional signaling by double-stranded RNA: role of TLR3. Cytokine Growth Factor Rev. 16, 1-14. https://doi.org/10.1016/j.cytogfr.2005.01.006
- Ulland, T. K., Wang, Y. and Colonna, M. (2015) Regulation of microglial survival and proliferation in health and diseases. Semin. Immunol. 27, 410-415. https://doi.org/10.1016/j.smim.2016.03.011
- Zeng, H., Huang, P., Wang, X., Wu, J., Wu, M. and Huang, J. (2015) Galangin-induced down-regulation of BACE1 by epigenetic mechanisms in SH-SY5Y cells. Neuroscience 294, 172-181. https://doi.org/10.1016/j.neuroscience.2015.02.054
-
Zhao, X. R., Gonzales, N. and Aronowski, J. (2015) Pleiotropic role of
$PPAR{\gamma}$ in intracerebral hemorrhage: an intricate system involving Nrf2, RXR, and$NF-{\kappa}B$ . CNS Neurosci. Ther. 21, 357-366. https://doi.org/10.1111/cns.12350 - Zolezzi, J. M., Santos, M. J., Bastias-Candia, S., Pinto, C., Godoy, J. A. and Inestrosa, N. C. (2017) PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation. Biol. Rev. Camb. Philos. Soc. 92, 2046-2069. https://doi.org/10.1111/brv.12320
Cited by
- The beneficial and deleterious role of dietary polyphenols on chronic degenerative diseases by regulating gene expression vol.12, pp.6, 2018, https://doi.org/10.5582/bst.2018.01172
- Protective effect of galangin against dextran sulfate sodium (DSS)-induced ulcerative colitis in Balb/c mice vol.68, pp.8, 2017, https://doi.org/10.1007/s00011-019-01252-w
- Galangin Activates Nrf2 Signaling and Attenuates Oxidative Damage, Inflammation, and Apoptosis in a Rat Model of Cyclophosphamide-Induced Hepatotoxicity vol.9, pp.8, 2017, https://doi.org/10.3390/biom9080346
- Galangin ameliorates experimental autoimmune encephalomyelitis in mice via modulation of cellular immunity vol.18, pp.1, 2017, https://doi.org/10.1080/1547691x.2021.1890863
- Role of Phytoconstituents as PPAR Agonists: Implications for Neurodegenerative Disorders vol.9, pp.12, 2017, https://doi.org/10.3390/biomedicines9121914
- Flavonoid: A Mini Review on Galangin vol.34, pp.1, 2021, https://doi.org/10.14233/ajchem.2022.23555