DOI QR코드

DOI QR Code

Lymphotoxin β Receptor Stimulation Is Linked to MLCK Activity and Suppresses Stress Fiber Formation in Agonistic Anti-LTβR Antibody-stimulated Fibroblastic Reticular Cells

FRC에서 agonistic anti-LTβR antibody의 LTβR 자극은 MLCK 연관성 및 stress fiber 형성에 대한 강력한 억제 작용

  • Kim, Min Hwan (Department of Smart-Biohealth, College of Engineering, Dong-eui University) ;
  • Lee, Jong-Hwan (Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University)
  • 김민환 (동의대학교 스마트바이오헬스학과) ;
  • 이종환 (동의대학교 바이오응용공학부 의생명공학전공)
  • Received : 2017.07.23
  • Accepted : 2017.10.19
  • Published : 2017.10.30

Abstract

The lymphotoxin ${\beta}$ receptor ($LT{\beta}R$), a member of the tumor necrosis factor receptor family, plays an important role in lymphoid tissue's architecture and organogenesis. We found that $LT{\beta}R$ stimulation induced changes in stress fibers (SFs) in fibroblastic reticular cells (FRCs). MLCK and ROCK play critical roles in the regulation of SF formation in cells. The present study was performed to investigate the antifibrotic effects on SF regulation of $LT{\beta}R$ signaling, with a focus on MLCK inhibition. The effect of $LT{\beta}R$ on the SF change was analyzed using immunoblot and fluorescence assays and agonistic $anti-LT{\beta}R$ antibody-treated FRCs. In addition, we checked the level of Rho-guanosine diphosphate (GDP)/guanosine triphosphate (GTP) exchange activity with FRC lysate. Phospho-ezrin proteins acting as membrane-cytoskeleton linkers completely de-phosphorylated in agonistic $anti-LT{\beta}R$ antibody-treated FRCs. The actin bundles rearranged into SFs, where phospho-myosin light chain (p-MLC) co-localized in FRCs. ML7-treated FRCs completely blocked SFs and showed retraction and shrinkage processes comparable to those observed in agonistic $anti-LT{\beta}R$ antibody-treated cells. Inhibition of ROCK activity induced changes in the actin cytoskeleton organization; however, some SFs remained in the cells, while they were completely disrupted by MLCK inhibition with ML7. We showed that the phosphorylation of MLC was completely abolished with $LT{\beta}R$ stimulation in FRCs. When $LT{\beta}R$ was stimulated with the agonistic $anti-LT{\beta}R$ antibody, the Rho-GDP/GTP exchange activity was reduced, however, the activity was not completely abolished. Collectively, the results illustrated that MLCK was potently responsible for the SF regulation triggered via $LT{\beta}R$ signaling in FRCs.

종양괴사인자 수용체 일종인 Lymphotoxin ${\beta}$ receptor ($LT{\beta}R$)은 림프 구조와 기관 형성에 중요한 역학을 한다. 우리는 fibroblastic reticular cell (FRC)에서 agonistic $anti-LT{\beta}R$ antibody로 $LT{\beta}R$을 자극하면 stress fiber (SF)에 변화가 생긴다는 것을 알았다. MLCK와 ROCK는 세포에서 SF 형성 기여에 중요한 역할을 한다. 본 연구는 MLCK 저해에 초점을 맞추어 $LT{\beta}R$ 신호 전달은 SF 조절로 항섬유화 효과에 대하여 조사하였다. SF 변화에 대한 $LT{\beta}R$의 기능 조사를 위해 agonistic $anti-LT{\beta}R$ antibody로 처리된 FRC와 세포 추출물을 이용하여 immunoblot, fluorescence assay와 Rho-guanosine diphosphate (GDP)/guanosine triphosphate (GTP) exchange 활성 분석법으로 분석하였다. 세포막과 세포골격 연결자 ezrin은 agonistic $anti-LT{\beta}R$ antibody 처리된 FRC에서 완전히 탈인사화가 유도되었다. Actomysoisn에 의한 SF를 확인하였고 인산화 myosin light chain (p-MLC)인 함께 co-localization 되는 것도 확인하였다. ML7 처리된 FRC에서 agonistic $anti-LT{\beta}R$ antibody 처리된 세포에서 관찰되는 유사한 현상인 SF분해, 세포막 응축과 쇠퇴 현상이 나타났다. ROCK 활성저해는 액틴 골격 변화는 유도하였으나 부분적으로 SF가 세포에 남아 있었다. 반면, ML7에 의한 MLCK저해는 SF를 완전히 분해하였다. 또한, $LT{\beta}R$ 자극은 MLC 인산화를 완전히 억제하였지만, Rho-GDP/GTP exchange 활성변화에서는 감소는 되었으나 활성이 완전히 없어지지는 않았다. 결론적으로 이런 결과들은 FRC에서 $LT{\beta}R$신호전달을 통해 유도되는 SF 조절에는 MLCK가 보다 더 강력한 역할을 한다는 것을 제시하고 있다.

Keywords

References

  1. Biri-Kovacs, B., Kiss, B., Vadaszi, H., Gogl, G., Palfy, G., Torok, G., Homolya, L., Bodor, A. and Nyitray, L. 2017. Ezrin interacts with S100A4 via both its N- and C-terminal domains. PLoS One 12, e0177489. https://doi.org/10.1371/journal.pone.0177489
  2. Chang, C. W. and Kumar, S. 2015. Differential contributions of nonmuscle myosin II isoforms and functional domains to stress fiber mechanics. Sci. Rep. 5, 13736. https://doi.org/10.1038/srep13736
  3. Chen, L. and Flies, D. B. 2013. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13, 227-242. https://doi.org/10.1038/nri3405
  4. Comerford, I., Harata-Lee, Y., Bunting, M. D., Gregor, C., Kara, E. E. and McColl, S. R. 2013. A myriad of functions and complex regulation of the CCR7/CCL19/CCL21 chemokine axis in the adaptive immune system. Cytokine Growth Factor Rev. 24, 269-283. https://doi.org/10.1016/j.cytogfr.2013.03.001
  5. Connell, L. E. and Helfman, D. M. 2006. Myosin light chain kinase plays a role in the regulation of epithelial cell survival. J. Cell Sci. 119, 2269-2281. https://doi.org/10.1242/jcs.02926
  6. Katakai, T., Hara, T., Sugai, M., Gonda, H. and Shimizu, A. 2004. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J. Exp. Med. 200, 783-795. https://doi.org/10.1084/jem.20040254
  7. Katakai, T. and Kinashi, T. 2016. Microenvironmental control of high-speed interstitial T cell migration in the lymph node. Front Immunol. 7, 194.
  8. Katoh, K., Kano, Y., Amano, M., Kaibuchi, K. and Fujiwara, K. 2001. Stress fiber organization regulated by MLCK and Rho-kinase in cultured human fibroblasts. Am. J. Physiol. Cell Physiol. 280, 1669-1679. https://doi.org/10.1152/ajpcell.2001.280.6.C1669
  9. Kovacs-Kasa, A., Gorshkov, B. A., Kim, K. M., Kumar, S., Black, S. M., Fulton, D. J., Dimitropoulou, C., Catravas, J. D. and Verin, A. D. 2016. The protective role of MLCP-mediated ERM dephosphorylation in endotoxin-induced lung injury in vitro and in vivo. Sci. Rep. 6, 39018. https://doi.org/10.1038/srep39018
  10. Lee, C. F., Haase, C., Deguchi, S. and Kaunas, R. 2010. Cyclic stretch-induced stress fiber dynamics - dependence on strain rate, Rho-kinase and MLCK. Biochem. Biophys. Res. Commun. 401, 344-349. https://doi.org/10.1016/j.bbrc.2010.09.046
  11. Lee, J. H., Katakai, T., Hara, T., Gonda, H., Sugai, M. and Shimizu, A. 2004. Roles of p-ERM and Rho-ROCK signaling in lymphocyte polarity and uropod formation. J. Cell Biol. 167, 327-337. https://doi.org/10.1083/jcb.200403091
  12. Lee, J. S., Kim, Y. H. and Lee, J. H. 2013. Involvement of RhoA/ROCK signaling for alteration of stress fiber via lymphotoxin ${\beta}$ receptor stimulation in fibroblastic reticular cell isolated from lymph node. Anim. Cells Syst. 6, 421-428.
  13. Locksley, R. M., Killeen, N. and Lenardo, M. J. 2001. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487-501. https://doi.org/10.1016/S0092-8674(01)00237-9
  14. Loirand, G. and Pacaud, P. 2014. Involvement of Rho GTPases and their regulators in the pathogenesis of hypertension. Small GTPases 5, 1-10.
  15. Lu, L., Oswald, S. J., Ngu, H. and Yin, F. C. 2008. Mechanical properties of actin stress fibers in living cells. Biophys. J. 95, 6060-6071. https://doi.org/10.1529/biophysj.108.133462
  16. Lu, T. T. and Browning, J. L. 2014. Role of the Lymphotoxin/LIGHT system in the development and maintenance of reticular networks and vasculature in lymphoid tissues. Front Immunol. 5, 47.
  17. McKenzie, J. A. and Ridley, A. J. 2007. Roles of Rho/ROCK and MLCK in TNF-alpha-induced changes in endothelial morphology and permeability. J. Cell Physiol. 213, 221-228. https://doi.org/10.1002/jcp.21114
  18. Oakes, P. W., Wagner, E., Brand, C. A., Probst, D., Linke, M., Schwarz, U. S., Glotzer, M. and Gardel, M. L. 2017. Optogenetic control of RhoA reveals zyxin-mediated elasticity of stress fibres. Nat. Commun. 8, 15817. https://doi.org/10.1038/ncomms15817
  19. Onder, L., Narang, P., Scandella, E., Chai, Q., Iolyeva, M., Hoorweg, K., Halin, C., Richie, E., Kaye, P., Westermann, J., Cupedo, T., Coles, M. and Ludewig, B. 2012. IL-7-producing stromal cells are critical for lymph node remodeling. Blood 120, 4675-4683. https://doi.org/10.1182/blood-2012-03-416859
  20. Tanner, K., Boudreau, A., Bissell, M. J. and Kumar, S. 2010. Dissecting regional variations in stress fiber mechanics in living cells with laser nanosurgery. Biophys. J. 99, 2775-2783. https://doi.org/10.1016/j.bpj.2010.08.071
  21. Thompson, H. L., Smithey, M. J., Surh, C. D. and NikolichZugich, J. 2017. Functional and homeostatic impact of age-related changes in lymph node stroma. Front Immunol. 8, 706. https://doi.org/10.3389/fimmu.2017.00706
  22. Tojkander, S., Gateva, G., Husain, A., Krishnan, R. and Lappalainen, P. 2015. Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly. Elife 4, e06126.
  23. Wu, Z., Plotnikov, S. V., Moalim, A. Y., Waterman, C. M. and Liu, J. 2017. Two distinct actin networks mediate traction oscillations to confer focal adhesion mechanosensing. Biophys. J. 112, 780-794. https://doi.org/10.1016/j.bpj.2016.12.035
  24. Zhao, L., Chen J., Liu, L., Gao, J., Guo B. and Zhu, B. 2015. Essential role of TNF-alpha in development of spleen fibroblastic reticular cells. Cell Immunol. 293, 130-136. https://doi.org/10.1016/j.cellimm.2015.01.006