DOI QR코드

DOI QR Code

Interaction of Ras-GTPase-activating Protein SH3 Domain-binding Proteins 2, G3BP2, With the C-terminal Tail Region of KIF5A

Ras-GTPase-activating protein SH3 domain-binding proteins 2, G3BP2와 KIF5A C-말단 꼬리 영역과의 결합

  • Jeong, Young Joo (Department of Biochemistry, Inje University College of Medicine) ;
  • Jang, Won Hee (Department of Biochemistry, Inje University College of Medicine) ;
  • Lee, Won Hee (Department of Neurosurgery, Inje University College of Medicine) ;
  • Kim, Mooseong (Department of Neurosurgery, Inje University College of Medicine) ;
  • Kim, Sang-Jin (Department of Neurology, Inje University College of Medicine) ;
  • Urm, Sang-Hwa (Department of Preventive Medicine, Inje University College of Medicine) ;
  • Moon, Il Soo (Departments of Anatomy, College of Medicine, Dongguk University) ;
  • Seog, Dae-Hyun (Department of Biochemistry, Inje University College of Medicine)
  • 정영주 (인제대학교 의과대학 생화학교실) ;
  • 장원희 (인제대학교 의과대학 생화학교실) ;
  • 이원희 (인제대학교 의과대학 신경외과학교실) ;
  • 김무성 (인제대학교 의과대학 신경외과학교실) ;
  • 김상진 (인제대학교 의과대학 신경과학교실) ;
  • 엄상화 (인제대학교 의과대학 예방의학교실) ;
  • 문일수 (동국대학교 의과대학 해부학교실) ;
  • 석대현 (인제대학교 의과대학 생화학교실)
  • Received : 2017.07.07
  • Accepted : 2017.09.07
  • Published : 2017.10.30

Abstract

Vesicles and organelles are transported along microtubule and delivered to appropriate compartments in cells. The intracellular transport process is mediated by molecular motor proteins, kinesin, and dynein. Kinesin is a plus-end-directed molecular motor protein that moves the various cargoes along microtubule tracks. Kinesin 1 is first isolated from squid axoplasm is a dimer of two heavy chains (KHCs, also called KIF5s), each of which is associated with the light chain (KLC). KIF5s interact with many different binding proteins through their carboxyl (C)-terminal tail region, but their binding proteins have yet to be specified. To identify the interacting proteins for KIF5A, we performed the yeast two-hybrid screening and found a specific interaction with Ras-GTPase-activating protein (GAP) Src homology3 (SH3)-domain-binding protein 2 (G3BP2), which is involved in stress granule formation and mRNA-protein (mRNP) localization. G3BP2 bound to the C-terminal 73 amino acids of KIF5A but did not interact with the KIF5B, nor the KIF5C in the yeast two-hybrid assay. The arginine-glycine-glycine (RGG)/Gly-rich region domain of G3BP2 is a minimal binding domain for interaction with KIF5A. However, G3BP1 did not interact with KIF5A. When co-expressed in HEK-293T cells, G3BP2 co-localized with KIF5A and was co-immunoprecipitated with KIF5A. These results indicate that G3BP2, which was originally identified as a Ras-GAP SH3 domain-binding protein, is a protein that interacts with KIF5A.

세포 내 소기관들과 소포들은 세포 내에서 미세소관을 따라 적절한 구획으로 수송된다. 이러한 세포 내 수송과정은 분자 모터단백질인 kinesin과 dynein에 의하여 이루어진다. Kinesin 1은 오징어 축삭돌기 세포질로부터 처음 분리되었으며 2개의 중쇄단위체(KHCs, 또는 KIF5s) 및 이와 결합하는 경쇄단위체(KLCs)의 복합체를 형성한다. KIF5s는C-말단 고리 영역을 통해 많은 다양한 단백질과 결합하는데, 아직 그 결합단백질들은 충분히 밝혀지지 않았다. 본 연구에서는 KIF5A 결합단백질을 분리하기 위하여 효모 two-hybrid 탐색을 수행하여 스트레스 과립형성과 mRNP 위치결정에 관여하는 Ras-GTPase-activating protein (GAP) Src homology3 (SH3)-domain-binding protein 2 (G3BP2)를 분리하였다. G3BP2는 KIF5A의 C-말단 고리 영역에 존재하는 73개 아미노산을 포함하는 영역과 결합하였다. 그러나 G3BP2는 KIF5B, KIF5C, KLC1, KIF3A와는 결합하지 않았다. KIF5A는 G3BP2의 arginine-glycine-glycine(RGG)/Gly-rich 도메인과 결합하지만 G3BP1과는 결합하지 않았다. HEK-293T세포에 G3BP2와 KIF5A를 발현하여 면역침강한 결과 G3BP2와 KIF5A는 같이 침강하였다. 또한 HEK-293T 세포 내의 전체에서 두 단백질은 같은 부위에 존재하였다. 이러한 결과들은 세포 내에서 G3BP2는 KIF5A와 결합하는 결합단백질로 확인 되었다.

Keywords

References

  1. Anderson, P. and Kedersha, N. 2006. RNA granules. J. Cell Biol. 172, 803-808. https://doi.org/10.1083/jcb.200512082
  2. Anderson, P. and Kedersha, N. 2008. Stress granules: the tao of RNA triage. Trends Biochem. Sci. 33, 141-150. https://doi.org/10.1016/j.tibs.2007.12.003
  3. Anderson, P. and Kedersha, N. 2009. RNA granules: posttranscriptional and epigenetic modulators of gene expression. Nat. Rev. Mol. Cell Biol. 10, 430-436. https://doi.org/10.1038/nrm2694
  4. Angenstein, F., Evans, A. M., Settlage, R. E., Moran, S. T., Ling, S. C., Klintsova, A. Y., Shabanowitz, J., Hunt, D. F. and Greenough, W. T. 2002. A receptor for activated C kinase is part of messenger ribonucleoprotein complexes associated with polyA-mRNAs in neurons. J. Neurosci. 22, 8827-8837. https://doi.org/10.1523/JNEUROSCI.22-20-08827.2002
  5. Bikkavilli, R. K. and Malbon, C. C. 2011. Arginine methylation of G3BP1 in response to Wnt3a regulates ${\beta}$-catenin mRNA. J. Cell Sci. 124, 2310-2320. https://doi.org/10.1242/jcs.084046
  6. Brendza, R. P., Serbus, L. R., Duffy, J. B. and Saxton, W. M. 2000. A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289, 2120-2122. https://doi.org/10.1126/science.289.5487.2120
  7. Buchan, J. R. and Parker, R. 2009. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 36, 932-941. https://doi.org/10.1016/j.molcel.2009.11.020
  8. Costa, M., Ochem, A., Staub, A. and Falaschi, A. 1999. Human DNA helicase VIII: a DNA and RNA helicase corresponding to the G3BP protein, an element of the ras transduction pathway. Nucleic Acids Res. 27, 817-821. https://doi.org/10.1093/nar/27.3.817
  9. Diefenbach, R. J., Mackay, J. P., Armati, P. J. and Cunningham, A. L. 1998. The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry 37, 16663-16670. https://doi.org/10.1021/bi981163r
  10. Diefenbach, R. J., Miranda-Saksena, M., Diefenbach, E., Holland, D. J., Boadle, R. A., Armati, P. J. and Cunningham, A. L. 2002. Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain. J. Virol. 76, 3282-3291. https://doi.org/10.1128/JVI.76.7.3282-3291.2002
  11. Furukawa, M. T., Sakamoto, H. and Inoue, K. 2015. Interaction and colocalization of HERMES/RBPMS with NonO, PSF, and G3BP1 in neuronal cytoplasmic RNP granules in mouse retinal line cells. Genes Cells 20, 257-266. https://doi.org/10.1111/gtc.12224
  12. Hirokawa, N., Niwa, S. and Tanaka, Y. 2010. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610-638. https://doi.org/10.1016/j.neuron.2010.09.039
  13. Hirokawa, N., Noda, Y., Tanaka, Y. and Niwa, S. 2009. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682-696.
  14. Irvine, K., Stirling, R., Hume, D. and Kennedy, D. 2004. Rasputin, more promiscuous than ever: a review of G3BP. Int. J. Dev. Biol. 48, 1065-1077. https://doi.org/10.1387/ijdb.041893ki
  15. Jang, W. H. and Seog, D. H. 2013. Kinesin superfamily-associated protein 3 (KAP3) mediates the interaction between Kinesin-II motor subunits and HS-1-associated protein X-1 (HAX-1) through direct binding. J. Life Sci. 23, 978-983. https://doi.org/10.5352/JLS.2013.23.8.978
  16. Jang, W. H., Jeong, Y. J., Urm, S. H. and Seog, D. H. 2016. The scaffolding protein WAVE1 associates with kinesin 1 through the tetratricopeptide repeat (TPR) domain of the kinesin lght chain (KLC). J. Life Sci. 26, 963-969. https://doi.org/10.5352/JLS.2016.26.8.963
  17. Kanai, Y., Dohmae, N. and Hirokawa, N. 2004. Kinesin transports RNA: isolation and characterization of an RNAtransporting granule. Neuron 43, 513-525. https://doi.org/10.1016/j.neuron.2004.07.022
  18. Kanai, Y., Okada, Y., Tanaka, Y., Harada, A., Terada, S. and Hirokawa, N. 2000. KIF5C, a novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374-6384. https://doi.org/10.1523/JNEUROSCI.20-17-06374.2000
  19. Kedersha, N., Panas, M. D., Achorn, C. A., Lyons, S., Tisdale, S., Hickman, T., Thomas, M., Lieberman, J., McInerney, G. M., Ivanov, P. and Anderson, P. 2016. G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J. Cell Biol. 212, 845-860. https://doi.org/10.1083/jcb.201508028
  20. Kennedy, D., French, J., Guitard, E., Ru, K., Tocque, B. and Mattick, J. 2001. Characterization of G3BPs: tissue specific expression, chromosomal localisation and rasGAP (120) binding studies. J. Cell Biochem. 84, 173-187.
  21. Macara, I. G. 2001. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570-594. https://doi.org/10.1128/MMBR.65.4.570-594.2001
  22. Martin, S., Zekri, L., Metz, A., Maurice, T., Chebli, K., Vignes, M. and Tazi, J. 2013. Deficiency of G3BP1, the stress granules assembly factor, results in abnormal synaptic plasticity and calcium homeostasis in neurons. J. Neurochem. 125, 175-184. https://doi.org/10.1111/jnc.12189
  23. Matsuki, H., Takahashi, M., Higuchi, M., Makokha, G. N., Oie, M. and Fujii, M. 2013. Both G3BP1 and G3BP2 contribute to stress granule formation. Genes Cells 18, 135-146. https://doi.org/10.1111/gtc.12023
  24. Muresan, Z. and Muresan, V. 2005. Coordinated transport of phosphorylated amyloid-beta precursor protein and c-Jun NH2-terminal kinase-interacting protein-1. J. Cell Biol. 171, 615-625. https://doi.org/10.1083/jcb.200502043
  25. Nakajima, K., Yin, X., Takei, Y., Seog, D. H., Homma, N. and Hirokawa, N. 2012. Molecular motor KIF5A is essential for GABA(A) receptor transport, and KIF5A deletion causes epilepsy. Neuron 76, 945-961. https://doi.org/10.1016/j.neuron.2012.10.012
  26. Reid, E., Kloos, M., Ashley-Koch, A., Hughes, L., Bevan, S., Svenson, I. K., Graham, F. L., Gaskell, P. C., Dearlove, A., Pericak-Vance, M. A., Rubinsztein, D. C. and Marchuk, D. A. 2002. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am. J. Hum. Genet. 71, 1189-1194. https://doi.org/10.1086/344210
  27. Seog, D. H., Lee, D. H. and Lee, S. K. 2004. Molecular motor proteins of the kinesin superfamily proteins (KIFs): structure, cargo and disease. J. Kor. Med. Sci. 19, 1-7. https://doi.org/10.3346/jkms.2004.19.1.1
  28. Setou, M., Seog, D. H., Tanaka, Y., Kanai, Y., Takei, Y., Kawagishi, M. and Hirokawa, N. 2002. Glutamate-receptor-interactingprotein GRIP1 directly steers kinesin to dendrites. Nature 417, 83-87. https://doi.org/10.1038/nature743
  29. Tanaka, Y., Kanai, Y., Okada, Y., Nonaka, S., Takeda, S., Harada, A. and Hirokawa, N. 1998. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147-1158. https://doi.org/10.1016/S0092-8674(00)81459-2
  30. Tourriere, H., Chebli, K., Zekri, L., Courselaud, B., Blanchard, J.M., Bertrand, E. and Tazi, J. 2003. The RasGAP associated endoribonuclease G3BP assembles stress granules. J. Cell Biol. 160, 823-831. https://doi.org/10.1083/jcb.200212128
  31. Xia, C. H., Roberts, E. A., Her, L. S., Liu, X., Williams, D. S., Cleveland, D. W. and Goldstein, L. S. 2003. Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A. J. Cell Biol. 161, 55-66. https://doi.org/10.1083/jcb.200301026