References
- E. W. Barnes, The asymptotic expansion of integral functions defined by Taylor series, Philos. Trans. Roy. Soc. London Ser. A, 206(1906), 249-297. https://doi.org/10.1098/rsta.1906.0019
- M. A. Chaudhry and S. M. Zubair, On a Class of Incomplete Gamma Functions with Applications, Chapman and Hall, (CRC Press Company), Boca Raton, London, New York and Washington, D. C., 2001.
- J. Choi, D. S. Jang and H. M. Srivastava, A generalization of the Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct., 19(2008), 65-79. https://doi.org/10.1080/10652460701528909
- A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcen-dental Functions, Vol. I, McGraw-Hill Book Company, New York, Toronto and London, 1953.
- A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcen-dental Functions, Vol. III, McGraw-Hill Book Company, New York, Toronto and London, 1955.
- S. P. Goyal and R. K. Laddha, On the generalized Zeta function and the generalized Lambert function, Ganita Sandesh, 11(1997), 99-108.
-
H. M. Srivastava, A new family of the
$\lambda$ -generalized Hurwitz-Lerch Zeta functions with applications, Appl. Math. Inf. Sci., 8(4)(2014), 1485-1500. https://doi.org/10.12785/amis/080402 - H. M. Srivastava, A. Cetinkaya and I Onur Kiyamaz, A Certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput., 226(2014), 484-491.
- H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer, Acedemic Publishers, Dordrecht, Boston and London, 2001.
- H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science, Publishers, Amsterdam, London and New York, 2012.
- H. M. Srivastava, M.-J. Luo and R. K. Raina, New results involving a class of generalized Hurwitz-Lerch Zeta functions and their applications, Turkish J. Anal. Number Theory 1(1)(2013), 26-35.
- H. M. Srivastava, R. K. Saxena, T. K. Pogany and R. Saxena, Integral and computational representations of the extended Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct., 22(7)(2011), 487-506. https://doi.org/10.1080/10652469.2010.530128
- E. T. Whittaker and G. N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions, With an Account of the Principal Transcendental Functions, Fourth edition, Cambridge University Press, Cambridge, London and New York, 1963.