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Abstract. Very recently, Srivastava et al. [8] introduced an extension of the Pochhammer

symbol and used it to define a generalization of the generalized hypergeometric functions.

In this paper, by using the generalized Pochhammer symbol, we extend the generalized

Hurwitz-Lerch Zeta function by Goyal and Laddha [6] and investigate some interesting

properties which include various integral representations, Mellin transforms, differential

formula and generating function. Some interesting special cases of our main results are

also considered.

1. Introduction and Preliminaries

Throughout this paper, N, Z−, R, R+ and C denote the sets of positive inte-
gers, negative integers, real numbers, positive real numbers and complex numbers,
respectively, and N0 := N ∪ {0} and Z−0 := Z− ∪ {0}.
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The Hurwitz-Lerch Zeta function Φ(z, s, a) is defined by (see, e.g., [4, p. 27,
Eq. 1.11(1)]; see also [9, p. 121] and [10, p. 194]):

(1.1) Φ(z, s, a) :=

∞∑
n=0

zn

(n+ a)s(
a ∈ C \ Z−0 ; s ∈ C when |z| < 1; <(s) > 1 when |z| = 1

)
.

It is known (see, e.g., [4, p. 27, Eq. 1.11(3)]; see also [10, p. 194, Eq. 2.5(4)])
that

(1.2) Φ(z, s, a) =
1

Γ(s)

∞∫
0

ts−1e−at

1− ze−t
dt =

1

Γ(s)

∞∫
0

ts−1e−(a−1)t

et − z
dt

(
<(a) > 0; <(s) > 0 when |z| 5 1 (z 6= 1); <(s) > 1 when z = 1

)
.

For further properties and the special cases of the Hurwitz-Lerch Zeta function
Φ(z, s, a), one may refer to [4, Chapter I], [9], [10] and [13, p. 280, Example 8],
respectively.

Various generalizations of the Hurwitz-Lerch Zeta function Φ(z, s, a) have been
investigated by many authors (see, e.g., [1, 2, 3, 4, 5]). Very recently, Srivastava [7]
and Srivastava et al. [11, 12] have investigated certain generalizations of Hurwitz-
Lerch Zeta function with their applications in a systematic and extensive way.

In particular, Goyal and Laddha [6, p. 100, Eq. (1.5)] generalized the Hurwitz-
Lerch Zeta function Φ(z, s, a) as follows:

(1.3) Φ∗µ(z, s, a) :=

∞∑
n=0

(µ)n
n!

zn

(n+ a)s(
µ ∈ C; a ∈ C \ Z−0 ; s ∈ C when |z| < 1;<(s− µ) > 1 when |z| = 1

)
and equivalently, by means of an integral representation as follows:

(1.4) Φ∗µ(z, s, a) =
1

Γ(s)

∞∫
0

ts−1e−at

(1− ze−t)µ
dt =

1

Γ(s)

∞∫
0

ts−1e−(a−1)t

(et − z)µ
dt

(
<(a) > 0; <(s) > 0 when |z| 5 1 (z 6= 1); <(s) > 1 when z = 1

)
.

Very recently, Srivastava et al. [8, p. 487, Eq.(15)] introduced and studied,
in a rather systematic manner, the following family of generalized hypergeometric
functions:

(1.5) rFs

[
(α1, p), α2, · · · , αr;

β1, · · · , βs;
z

]
=

∞∑
n=0

(α1; p)n(α2)n · · · (αr)n
(β1)n · · · (βs)n

zn

n!
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in terms of the generalized Pochhammer symbol (λ; p)ν [8, p. 485, Eq.(8)]:

(1.6) (λ; p)ν :=


Γp(λ+ ν)

Γ(λ)
(<(p) > 0; λ, ν ∈ C),

(λ)ν (p = 0; λ, ν ∈ C).

or, equivalently, by means of an integral representation [8, p. 485, Eq.(9)] as follows:

(1.7) (λ; p)ν =
1

Γ(λ)

∫ ∞
0

tλ+ν−1 exp
(
−t− p

t

)
dt(

<(p) > 0; <(λ+ ν) > 0 when p = 0
)
.

Here, and in what follows, (λ)ν (λ, ν ∈ C) denotes the Pochhammer symbol (or
the shifted factorial) which is defined (in general) by

(1.8) (λ)ν :=
Γ(λ+ ν)

Γ(λ)
=

 1 (ν = 0; λ ∈ C \ {0})

λ(λ+ 1) · · · (λ+ n− 1) (ν = n ∈ N; λ ∈ C),

it being understood conventionally that (0)0 := 1 and assumed tacitly that the
Γ-quotient exists (see, for details, [10, p. 2 and p. 5]).

It is easy to see that when p = 0, (1.5) and (1.6) reduces to the usual Pochham-
mer symbol (λ)ν (1.8) and familiar generalized hypergeometric function pFq.

Motivated essentially by the demonstrated potential for applications of these
extended generalized hypergeometric functions (1.5), we choose to extend the gen-
eralized Hurwitz-Lerch Zeta function (1.3) via the generalized Pochhammer symbol
in (1.6) and investigate certain properties of the extended generalized Hurwitz-
Lerch Zeta function which include their various integral representations, Mellin
transforms, differential formula and consider also a generating function.

2. Extended Generalized Hurwitz-Lerch Zeta Function

In terms of the extended generalized Pochhammer symbol (λ; p)n defined by
(1.6), we propose a mild extension of the generalized Hurwitz-Lerch Zeta function
defined by (1.3) as follows:

(2.1) Φ∗µ,p(z, s, a) :=

∞∑
n=0

(µ; p)n
n!

zn

(n+ a)s(
µ ∈ C; a ∈ C\Z−0 ; s ∈ C when |z| < 1; <(s−µ) > 1 when |z| = 1; <(p) ≥ 0

)
.

Since the generalized Pochhammer symbol (λ; p)ν is related to the modified
Bessel function of the third kind (or the MacDonald function) Kµ(z) (see [8]) as
follows:

(2.2) (λ; p)ν =
2p

λ+ν
2

Γλ
Kλ+ν(2

√
p) (<(p) > 0),
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therefore, the extended generalized Hurwitz-Lerch Zeta function defined by (2.1)
can also be written in the following form:

(2.3) Φ∗µ,p(z, s, a) =
2p

µ
2

Γ(µ)

∞∑
n=0

p
n
2Kµ+n(2

√
p)

(n+ a)s
zn

n!
.

The following representations can also be deduced from the expression (2.3):
(2.4)

Φ∗1
2 ,p

(z, s, a) = e−2
√
p
∞∑
n=0

n∑
m=0

(p
n
2 4
√
p)−m

m!

1

(n+ a)s
(n+m)!

(n−m)!

zn

n!
(<(p) > 0; n ∈ N0)

and

(2.5) Φ∗1,p(z, s, a) = 2
√
p

∞∑
n=0

p
n
2Kn+1(2

√
p)

(n+ a)s
zn

n!
(<(p) > 0).

Remark 2.1. The special case of (2.1) when p = 0 and (p, µ) = (0, 1) are easily
seen to reduce the generalized Hurwitz-Lerch Zeta function (1.3) and the Hurwitz-
Lerch Zeta function (1.1), respectively.

3. Integral Representations and Derivative Formula of Φ∗µ,p(z, s, a)

In this section, we present certain integral representations of the extended gen-
eralized Hurwitz-Lerch Zeta function defined by (2.1).

Theorem 3.1. The following integral representation for Φ∗µ,p(z, s, a) in (2.1) holds
true:

(3.1) Φ∗µ,p(z, s, a) :=
1

Γ(s)

∞∫
0

ts−1e−at 1F0((µ, p);−; ze−t)dt

(
<(p) > 0, <(a) > 0; <(s) > 0 when |z| 5 1 (z 6= 1); <(s) > 1 when z = 1

)
.

Proof. Using the following Eulerian integral:

(3.2)
1

(n+ a)s
:=

1

Γ(s)

∞∫
0

ts−1e−(n+a)tdt (min{<(s), <(a)} > 0; n ∈ N0)

in (2.1) and interchanging the order of summation and integration, we get

Φ∗µ,p(z, s, a) :=
1

Γ(s)

∫ ∞
0

ts−1e−at

( ∞∑
n=0

(µ; p)n
(ze−t)n

n!

)
dt

Finally, using the definition (1.5), we are led to the desired result.
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Remark 3.2. The special case of (3.1) when p = 0 yields the integral representation
(1.4).

Theorem 3.3. The following integral representation for Φ∗µ,p(z, s, a) in (2.1) holds
true:

(3.3) Φ∗µ,p(z, s, a) :=
1

Γ(µ)

∞∫
0

tµ−1e−t−
p
tE

(a)
1,1 (s; zt)dt

(
<(p) = 0, <(a) > 0; <(s) > 0 when |z| 5 1 (z 6= 1); <(s) > 1 when z = 1

)
,

where E
(a)
κ,ν(s; z) is the Mittag-Leffler type function studied by Barnes [1] (see also

[5, Section 18.1] and [12, p. 492, Eq.(1.24)]) and is defined by

(3.4) E(a)
κ,ν(s; z) =

∞∑
n=0

zn

Γ(ν + κn)(n+ a)s
(
ν, a ∈ C \ Z−0 ; <(κ) > 0; s ∈ C

)
.

Proof. Using the integral representation of the generalized Pochhammer symbol
(µ; p)n defined by (1.7) in (2.1) and using the relation (3.4), we are led to the
desired integral representation (3.3).

Differentiating n times both sides of (2.1) with respect to z, we can easily ob-
tain a derivative formula for the extended generalized Hurwitz-Lerch Zeta function
Φ∗µ,p(z, s, a) which is contained in the following theorem.

Theorem 3.4 The following derivative formula for Φ∗µ,p(z, s, a) in (2.1) holds true:

(3.5)
dn

dzn
{

Φ∗µ,p(z, s, a)
}

= (µ)nΦ∗µ+n,p(z, s, a+ n) (n ∈ N0) .

4. Mellin Transform and Generating Function of Φ∗µ,p(z, s, a)

The Mellin transform of a suitable integrable function f(t) with index α is
defined, as usual, by

(4.1) M {f(τ) : τ → α} :=

∞∫
0

τα−1 f(τ) dτ,

whenever the improper integral in (4.1) exists.

Theorem 4.1. The following Mellin transform of the Φ∗µ,p(z, s, a) in (2.1) holds
true:

(4.2) M
{

Φ∗µ,p(z, s, a) : p→ α
}

:=
Γ(α)Γ(µ+ α)

Γ(µ)
Φ∗µ+α(z, s, a)

(<(α) > 0 and <(µ+ α) > 0).
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Proof. Using the definition (4.1) of the Mellin transform, we find from (2.1) that

M
{

Φ∗µ,p(z, s, a) : p→ α
}

:=

∞∫
0

pα−1

( ∞∑
n=0

(µ; p)n
n!

zn

(n+ a)s

)
dp

=

∞∑
n=0

zn

n!(n+ a)s
1

Γ(µ)

∞∫
0

pα−1Γp(µ+ n) dp.

Applying now the result of Chaudhry and Zubair [2, p. 16, Eq. (1.110)] given by

(4.3)

∞∫
0

pα−1Γp(γ + n)dp = Γ(γ + α+ n)Γ(α) (<(α) > 0),

we get

M
{

Φ∗µ,p(z, s, a) : p→ α
}

=
Γ(α)

Γ(µ)

∞∑
n=0

Γ(µ+ α+ n)

(n+ a)s
zn

n!
.

which, after a little simplification and using the definition (2.1), yields the desired
representation (4.2).

Remark 4.2. The case α = 1 in (4.2) is seen to yield an interesting relation
between the extended generalized Hurwitz-Lerch Zeta function and the generalized
Hurwitz-Lerch Zeta function as follows:

(4.4)

∞∫
0

Φ∗µ,p(z, s, a)dp = µΦ∗µ+1(z, s, a).

Next, we derive the generating function for Φ∗µ,p(z, s, a) given by following theorem.

Theorem 4.3. The following generating function for Φ∗µ,p(z, s, a) in (2.1) holds
true:

(4.5)

∞∑
n=0

(s)n
n!

Φ∗µ,p(z, s+ n, a) tn = Φ∗µ,p(z, s, a− t) (p = 0; |t| < |a|; s 6= 1)

Proof. Using (2.1) in the right-hand side of the assertion (4.5), we have

Φ∗µ,p(z, s, a− t) =

∞∑
k=0

(µ; p)k
zk

k!(k + a− t)s
=

∞∑
k=0

(µ; p)k
zk

k!(k + a)s

(
1− t

k + a

)−s
=

∞∑
k=0

(µ; p)k
zk

k!(k + a)s

{ ∞∑
n=0

(s)n
n!

tn

(k + a)n

}

=

∞∑
n=0

(s)n
n!

{ ∞∑
k=0

(µ; p)k
zk

k!(k + a)s+n

}
tn.
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Now on making use of (2.1), we get the desired generating function (4.5).
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