DOI QR코드

DOI QR Code

Cyclic Loading Test for Exposed Column-base Plate Connections of Small-size Steel Structures

소규모 철골조 노출형 주각부의 반복가력 실험

  • 임우영 (원광대학교 건축공학과) ;
  • 유영찬 (한국건설기술연구원 건축도시연구소) ;
  • 유미나 (한국건설기술연구원 건축도시연구소)
  • Received : 2016.10.11
  • Accepted : 2016.12.07
  • Published : 2017.03.01

Abstract

Cyclic loading tests for a total of nine test specimens were performed to evaluate the seismic performance of the exposed steel column-base plate connections. From the tests, flexural strength, deformation capacity, energy dissipation, and initial stiffness were investigated. The primary test parameters were the thickness of base-plate, embedment length of anchor bolt, the presence of hook, and rib plates. Test results showed that flexural behavior of column base-plate connection was substantially affected by the base-plate thickness, embedment length and the number of anchor bolts. On the other hand, the effect of rib plates on the increase of the flexural performance was not observed. The initial stiffness of the test specimens was about 15% of the flexural stiffness obtained by assuming that the support is fixed. As a result, even if the exposed column base-plate is designed in accordance with current design recommendations, in case that bond strength between concrete and the anchor bolts is not sufficient, the base-plate connection showed an unaccceptable load-displacement behavior.

본 연구에서는 소규모 철골조에 대한 기존 건축물의 접합부 현황조사와 분석을 통해 노출형 주각부에 대한 내진성능을 평가하였다. 총 9개의 주각부에 대한 반복가력 실험을 통해 휨강도, 변형능력, 그리고 초기강성 등이 조사되었다. 실험의 주요 변수는 베이스 플레이트의 두께, 앵커볼트의 개수와 매립깊이, 앵커볼트 후크의 유무, 그리고 리브 플레이트의 유무이다. 본 실험결과에 의하면, 주각부의 휨거동은 앵커볼트의 개수와 매립깊이, 그리고 베이스 플레이트의 두께에 영향을 받는 것으로 나타났다. 반면에, 주각부에 설치된 리브플레이트는 휨강도에 큰 영향을 주지 않는 것으로 나타났다. 종합적으로 노출형 철골 주각부와 기초부 그리고 앵커볼트 등이 모두 현행 구조기준을 만족한다고 할지라도, 앵커볼트와 기초부 콘크리트 사이의 부착력이 충분하지 않을 경우, 슬립형 거동이 관측되어 개선이 필요한 것으로 파악되었다. 앵커볼트의 매립깊이가 현행 구조기준을 만족하고, 앵커볼트에 후크가 설치된 경우, 노출형 주각부의 초기강성은 주각부가 구속되었을 때의 휨강성 하한값의 약 15% 수준인 것으로 나타났다.

Keywords

References

  1. ACI T1.1-01 (2001), Acceptance Criteria for Moment Frames Based on Structural Testing, American Concrete Institute.
  2. AISC (2005), Steel Construction Manual, Volume II, American Institute of Steel Construction.
  3. ANSI/AISC 341-10 (2010), Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction.
  4. Di Sarno, L., Pecce, M. R., and Fabbrocino, G. (2007), Inelastic Response of Composite Steel and Concrete Base Column Connections, Journal of Constructional Steel Research, 63, 819-832. https://doi.org/10.1016/j.jcsr.2006.08.007
  5. Drake, R. M., and Elkin, S. J. (1999), Beam-Column Base Plate Design - LRFD Method, Engineering Journal, First Quarter, 29-38.
  6. Fisher, J. M., and Kloiber, L. A. (2006), Design Guide 1: Base plate and anchor rod design, 2nd edition, American Institute of Steel Construction, 13-31.
  7. Fisher, J. M., and West, M. A., (1997), Design Guide 10 : Erection Bracing of Low-rise Structural Steel Building, American Institute of Steel Construction, 11-18.
  8. Gomez, I., Deierlein, G. G., and Kanvinde, A. M. (2010), Exposed Column Base Connections Subjected to Axial Compression and Flexure, Final report presented to the American Institute of Steel Construction, AISC Report, 3.1-3.54; B.1.
  9. Hon, K. K., and Mechers, R. E. (1988), Experimental Behaviour of Steel Column Bases, Journal of Constructional Steel Research, 9, 35-50. https://doi.org/10.1016/0143-974X(88)90055-7
  10. Kanvinde, A. M., Grilli, D. A., and Zareian, F. (2012), Rotational Stiffness of Exposed Column Base Connections: Experiments and Analytical Models, Journal of Structural Engineering, ASCE, 138(5), 549-560. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000495
  11. Korea Concrete Institute (2012), Design Code for Concrete Structures, Kimoondang (in Korean).
  12. Korean Society of Steel Construction (2014), Korean Steel Structure Design Code and Commentary: Load and Resistance Factored Design, Korean Society of Steel Construction (in Korean).
  13. KS B 0801 (2007), The Pieces for Tension Test for Metallic Materials, Korean Standard Association (in Korean).
  14. KS B 0802 (2003), Method of tensile test for metallic materials, Korean Standard Association (in Korean).
  15. Lee, G. H., You, Y. C., Choi, K. S., Koo, H. J., and Yoo, M. N. (2016), The Numerical Study on Capacity Evaluation of Exposed Steel Column-Base Plate Connection, Journal of the Korea Institute for Structural Maintenance and Inspection, 20(5), 26-34 (in Korean). https://doi.org/10.11112/jksmi.2016.20.5.026
  16. Lee, S. J., and Song, H. S. (2008), A Study on the Structural Behavior of Eccentrically Loaded Steel Column Base Plates, Korean Society of Steel Construction, 20(2), 323-332 (in Korean, with English abstract).
  17. Lim, W. Y., Kang, T. H. -K., and Hong, S. G. (2016), Cyclic Lateral Testing of Precast Concrete T-Walls in Fast Low-Rise Construction, ACI Structural Journal, 113(1), 179-189.
  18. Melchers, R. E. (1992), Column-Base Response Under Applied Moment, Journal of Constructional Steel Research, 23, 127-143. https://doi.org/10.1016/0143-974X(92)90040-L
  19. National Emergency Management (2011), Development of Technologies for Improvement of Seismic Performance on the Existing Low-Rise Buildings, NEMA.
  20. NZS 3404: Part 1: 2009 (2009), Steel Structures Standard, Part 1: Materials, Fabrication, and Construction, Standards New Zealand.
  21. Thambiratnam, D. P., and Paramasivam, P. (1986), Base Plates Under Axial Loads and Moments, Journal of Structural Engineering, ASCE, 112(5), 1166-1181. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:5(1166)
  22. The Korean Structural Engineers Association (2012), Structural Design Criteria and Commentary for One and Two Story Small Buildings, Kimoondang (in Korean).