DOI QR코드

DOI QR Code

Studies on Behavior Characteristics of Retrofitted Cut-and-Cover Underground Station Using Centrifuge Test Results

원심모형실험을 이용한 내진 보강된 개착식 지하역사의 거동특성 연구

  • 김진호 (한국철도기술연구원 광역도시교통연구본부) ;
  • 이나현 (한국철도기술연구원 광역도시교통연구본부) ;
  • 이후석 (한국철도기술연구원 광역도시교통연구본부)
  • Received : 2016.10.10
  • Accepted : 2016.11.17
  • Published : 2017.03.01

Abstract

Domestic urban railway underground station structures, which were built in the 1970s ad 1980s, had been constructed as Cut-and-Cover construction system without seismic design. Because the trends of earthquake occurrence is constantly increasing all over the world as well as the Korean Peninsula, massive human casualties and severe properties and structures damage might be occurred in an non-retrofitted underground station during an earthquake above a certain scale. Therefore, to evaluate the retrofit effect and soil-structure interaction of seismic retrofitted underground station, a centrifugal shaking table test with enhanced stiffness on its structural main member are carried out on 1/60 scaled model using the Kobe and Northridge earthquakes. The seismic retrofitted members, which are columns, side walls, and slabs, are evaluated to comparing with existing non-retrofitted centrifuge test results Also, to simulate the scaled ground using variation of shear velocity according to site conditions such as ground depth and density, resonant column test is performed. From the test results, the relative displacement behavior between ground and structures shows comparatively similar in ground, but is increased on ground surface. The seismic retrofit effects were measured using relative displacements and moment behavior of column and side walls rather than slabs. Additionally, earthquake wave can be used to main design factor due to large structural deformation on Kobe earthquake wave than Norhridge earthquake wave.

국내 도시철도 지하역사는 주로 개착식 공법으로 건설되었으며, 1970~80년대에 건설된 지하역사는 내진설계가 반영되지 않았다. 한반도 뿐 만 아니라, 전 세계적으로 지진 발생빈도는 증가하고 있는 추세이며, 내진설계가 적용되지 않은 기존 지하역사에 지진이 발생될 경우 막대한 인명 및 재산피해가 우려된다. 본 연구에서는 내진보강이 된 지하역사의 지반-구조물 상호작용과 보강효과를 검토하기 위해, Kobe 지진파 및 Northridge 지진파를 1/60축소모형에 적용하여 원심모형실험을 수행하였다. 내진보강은 주 부재인 기둥, 측벽, 슬래브의 강성을 증가시켜 내진보강 전후를 비교 검토하였다. 현장 조건에 따른 모형 지반을 모사하기 위해 공진주시험을 통해 실제 깊이 및 밀도에 따른 전단파 속도의 변화를 모사하였다. 지반과 구조물은 비교적으로 유사한 거동을 하였으며, 지표면으로 가까워질수록 상대변위가 증가하였다. 또한, 내진 보강전후의 지하역사 구조물의 슬래브에 비해 기둥과 측벽에서 상대변위와 모멘트 구조 거동을 통해 내진 보강 효과를 확인할 수 있었으며, 단주기인 Northridge지진파에 비해 Kobe지진파에서 구조물의 변형이 크게 발생하는 것을 통해 지진파는 주요 설계인자임을 확인할 수 있었다.

Keywords

References

  1. Hashash, Y., Hook, J., Schmidt, B., Yao, J. (2001), Seismic Design and Analysis of Underground Structures, Tunneling and Underground Space Technology, 16(4), 247-293. https://doi.org/10.1016/S0886-7798(01)00051-7
  2. Ito, K., Ohno, S., Matsuda, T., (2006), Seismic Response of Underground Reinforced Concrete Structure-centrifuge Model Test and Its Analysis, Structural Engineering/Earthquake Engineering-Japan Society of Civil Engineers, 23(1), 117-124. https://doi.org/10.2208/jsceseee.23.117s
  3. Kim J.H., Shin M.J (2011), Centrifuge-shaking Table Test for Seismic Performance Evaluation of Subway Station, Journal of the Korean Institute for Structural Maintenance and Inspection, 15(3), 99-105 (In Korean).
  4. Lee, T. H., Ki, J. S., Park, J. Y., Hwang, I. B. (2015), Example of Seismic Performance Evaluation on the Existing Railway Tunnel, Proceedings of 2015 Korea Institute for Structural Maintenance and Inspection, Korea Institute for Structural Maintenance and Inspection, Busan, 342-345 (In Korean).
  5. Lo, P., Berardi, R., Pedroni, S., Crippa, V. (1993), A New Travelling Sand Pluvaitor to Reconstitute Specimens of Well Graded Silty Sands, Geotechnical Testing Journal, 15(2), 61-77.
  6. Matsui, J., Ohtomo, K., Kanaya, K. (2004), Development and Validation of Nonlinear Dynamic Analysis in Seismic Performance Verification of Underground RC Structures, Journal of Advanced Concrete Technology, 2(1), 25-35. https://doi.org/10.3151/jact.2.25
  7. Miura, S., Toki, S. (1982), A Sample Preparation Method and Its Effect of Static and Cyclic Deformation-strength Properties of Sand, Soils and Foundations, 22(1), 61-77. https://doi.org/10.3208/sandf1972.22.61
  8. Nam S. H., Song, H. W., Byun, K. J., Maekawa K. (2006), Seismic Analysis of Underground Reinforced Concrete Structures Considering Elasto-plastic Interface Element with Thickness, Engineering Structures, 28(8), 1122-1131. https://doi.org/10.1016/j.engstruct.2005.12.003
  9. Nishiyama, S., Muroya, K., Haya, H., Shirou , T., Akihiko N. (1999). Seismic Design of Cut and Cover Tunnel Based on Damage Analyses and Experimental Studies, Quarterly Report of Railway Technical Research Institute, 40(3), 158-164.
  10. Park, B. H., Lee, W. C., Kim, J. H., Lim, N. H. (2009), A Study on Evaluation Method of Seismic Performance on Cut and Cover Tunnel of Subway in Japan, Korean Society for Railway, Proceedings of 2009 the Korean Society for Railway, The Korean Society for Railway, Gyeongju, 15-19 (In Korean).
  11. Seoul Metro (2007), Preliminary Evaluation of Seoul Metro Line No. 1-4 Seismic Performance, Seoul Metro, 7-187 (In Korean).
  12. Shin, H. Y. (2013), Seismic Performance of Cut and Cover Tunnel for Subway Using Centrifuge Model Test, Dissertation of Doctor of Philosophy, The University of Suwon, 8-100.
  13. Stone, K. J. L., Hensley, P. J., Taylor, R. N. (1991), A Centrifuge Study of Rectangular Box Culverts, Centrifuge '91 Balkema, Rotterdam, 107-112.
  14. Yoshihiko, M., (2012), Approach to Earthquakes in Tokyo Metro, Journal of Tunnel and Underground, Japan Tunnelling Association, 43(4), 295-300 (In Japanese).
  15. Zen, K., Yamazaki, H., Umehara, Y. (1987), Experimental Study on Shear Modulus and Damping Ratio of Natural Deposits for Seismic Response Analysis, Report of the Port and Harbour Research Institute, 26, 41-113.