DOI QR코드

DOI QR Code

Low Dropout Voltage Regulator Using 130 nm CMOS Technology

  • Marufuzzaman, Mohammad (Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia) ;
  • Reaz, Mamun Bin Ibne (Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia) ;
  • Rahman, Labonnah Farzana (Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia) ;
  • Mustafa, Norhaida Binti (Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia) ;
  • Farayez, Araf (Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia)
  • 투고 : 2016.11.09
  • 심사 : 2017.03.23
  • 발행 : 2017.10.25

초록

In this paper, we present the design of a 4.5 V low dropout (LDO) voltage regulator implemented in the 130 nm CMOS process. The design uses a two-stage cascaded operational transconductance amplifier (OTA) as an error amplifier, with a body bias technique for reducing dropout voltages. PMOS is used as a pass transistor to ensure stable output voltages. The results show that the proposed LDO regulator has a dropout voltage of 32.06 mV when implemented in the130 nm CMOS process. The power dissipation is only 1.3593 mW and the proposed circuit operates under an input voltage of 5V with an active area of $703{\mu}m^2$, ensuring that the proposed circuit is suitable for low-power applications.

키워드

참고문헌

  1. M. Marufuzzaman, M.B.I. Reaz, and M.A.M. Ali, Proc. of the Int. Conf. on Computer Applications and Industrial Electronics (IEEE, Kuala Lumpur, Malaysia, 2010) p. 600-603.
  2. S. Kumar, P. Jay, and R. Prasad, Int. J. Res. Eng. Technol. , 3, 2319 (2014). [DOI: http://dx.doi.org/10.15623/ijret.2014.0304168]
  3. A. Saberkari, E. Alarcon, and S. B. Shokouhi, Integration, the VLSI Journal , 46, 165 (2013). [DOI: http://dx.doi.org/10.1016/j.vlsi.2012.02.001]
  4. L. F. Rahman, M.B.I. Reaz, M.A.M. Ali, and M. Marufuzzaman, Elektronika ir Elektrotechnika , 120, 113 (2012). [DOI: http://dx.doi.org/10.5755/j01.eee.120.4.1466]
  5. W. Oh and B. Bakkaloglu, IEEE Transactions on Circuits and Systems, 54, 922 (2007). [DOI: http://dx.doi.org/10.1109/tcsii.2007.901621]
  6. R. J. Milliken, J. Silva-Martinez, and E. Sanchez-Sinencio, IEEE Trans. on Circuits and Systems I: Regular Papers , 54, 1879 (2007). [DOI: http://dx.doi.org/10.1109/TCSI.2007.902615]
  7. H. Martinez-Garcia, Proc. the 2014 IEEE Emerging Technology and Factory Automation (ETFA) (IEEE, Barcelona, Spain, 2014) p. 1. [DOI: http://dx.doi.org/10.1109/etfa.2014.7005343]
  8. A. Hicham and H. Qjidaa, Proc. 2012 IEEE International Conference on Complex Systems (ICCS) (IEEE, Agadir, Morocco, 2012) p. 1-4. [DOI: http://dx.doi.org/10.1109/ICoCS.2012.6458540]
  9. K. Kim, W. Park, D. Kim, J. Park, B. Song, and Y. Koo, Proc. TENCON 2012 IEEE Region 10 Conference (IEEE, Cebu, Philippines, 2012) p. 1-5. [DOI: http://dx.doi.org/10.1109/tencon.2012.6412315]
  10. M. Kayal, F. Vaucher, and P. Deval, Proc. 2006 Proceedings of the 32nd European Solid-State Circuits Conference (IEEE, Montreux, Switzerland, 2006) p. 536-539. [DOI: http://dx.doi.org/10.1109/ESSCIR.2006.307508]
  11. E. Abiri, M. R. Salehi, and S. Mohammadalinejadi, Proc. 2013 21st Iranian Conference on Electrical Engineering (ICEE) (IEEE, Mashhad, Iran, 2013) p. 1-5. [DOI: http://dx.doi.org/10.1109/IranianCEE.2013.6599866]
  12. D. Dwibedy, S. Alapati, S. Patri, and K. Ksr, Proc. TENCON 2014 -2014 IEEE Region 10 Conference (IEEE, Bangkok, Thailand, 2014) p. 1-5. [DOI: http://dx.doi.org/10.1109/TENCON.2014.7022398]
  13. S. R. Patri, S. Alapati, S. Chowdary, and K. Prasad, 18th Int. Symp. VLSI Des. Test (Coimbatore, 2014) p. 1-5.