DOI QR코드

DOI QR Code

Synthesis, morphology and electrochemical applications of iron oxide based nanocomposites

  • Letti, Camila J. (Instituto de Fisica, Universidade de Brasilia) ;
  • Costa, Karla A.G. (Instituto de Quimica, Universidade de Brasilia) ;
  • Gross, Marcos A. (Instituto de Quimica, Universidade de Brasilia) ;
  • Paterno, Leonardo G. (Instituto de Quimica, Universidade de Brasilia) ;
  • Pereira-da-Silva, Marcelo A. (Instituto de Fisica de Sao Carlos USP) ;
  • Morais, Paulo C. (Instituto de Fisica, Universidade de Brasilia) ;
  • Soler, Maria A.G. (Instituto de Fisica, Universidade de Brasilia)
  • Received : 2016.12.06
  • Accepted : 2017.07.29
  • Published : 2017.09.25

Abstract

The development of hybrid systems comprising nanoparticles and polymers is an opening pathway for engineering nanocomposites exhibiting outstanding mechanical, optical, electrical, and magnetic properties. Among inorganic counterpart, iron oxide nanoparticles (IONP) exhibit high magnetization, controllable surface chemistry, spintronic properties, and biological compatibility. These characteristics enable them as a platform for biomedical applications and building blocks for bottom-up approaches, such as the layer-by-layer (LbL). In this regard, the present study is addressed to investigate IONP synthesised through co-precipitation route (average diameter around 7 nm), with either positive or negative surface charges, LbL assembled with sodium sulfonated polystyrene (PSS) or polyaniline (PANI). The surface and internal morphologies, and electrochemical properties of these nanocomposites were probed with atomic force microscopy, UV-vis and Raman spectroscopy, scanning electron microscopy, cross-sectional transmission electron microscopy, and electrochemical measurements. The nanocomposites display a globular morphology with IONP densely packed while surface dressed by polyelectrolytes. The investigation of the effect of thermal annealing (300 up to $600^{\circ}C$) on the oxidation process of IONP assembled with PSS was performed using Raman spectroscopy. Our findings showed that PSS protects IONP from oxidation/phase transformation to hematite up to $400^{\circ}C$. The electrochemical performance of nanocomposite comprising IONP and PANI were investigated in $0.5mol{\times}L^{-1}$ $Na_2SO_4$ electrolyte solution by cyclic voltammetry and chronopotentiometry. Our findings indicate this structure as promising candidate for potential application as electrodes for supercapacitors.

Keywords

References

  1. Alcantara, G.B., Paterno, L.G., Afonso, A.S., Faria, R.C., Pereira-da-Silva, M.A., Morais, P.C. and Soler, M.A.G. (2011a), "Adsorption of cobalt ferrite nanoparticles within layer-by-layer films: a kinetic study carried out using quartz crystal microbalance", Phys. Chem. Chem. Phys., 13(48), 21233-21242. https://doi.org/10.1039/c1cp22693b
  2. Alcantara, G.B., Paterno, L.G., Fonseca, F.J., Morais, P.C. and Soler, M.A.G. (2011b), "Morphology of cobalt ferrite nanoparticle-polyelectrolyte multilayered nanocomposites", J. Magn. Magn. Mater., 323(10), 1372-1377. https://doi.org/10.1016/j.jmmm.2010.11.049
  3. Alcantara, G.B., Paterno, L.G., Fonseca, F.J., Pereira-da-Silva, M.A., Morais, P.C. and Soler, M.A.G. (2013a), "Dielectric properties of cobalt ferrite nanoparticles in ultrathin nanocomposite films", Phys. Chem. Chem. Phys., 15(45), 19853-19861. https://doi.org/10.1039/c3cp53602e
  4. Alcantara, G.B., Paterno, L.G., Fonseca, F.J., Pereira-da-Silva, M.A., Morais, P.C. and Soler, M.A.G. (2013b), "Layer-by-layer assembled cobalt ferrite nanoparticles for chemical sensing", J. Nanofluids, 2(3), 175-183. https://doi.org/10.1166/jon.2013.1053
  5. Alivisatos, A.P. (1996), "Semiconductor clusters, nanocrystals, and quantum dots", Science, 271, 933-937. https://doi.org/10.1126/science.271.5251.933
  6. Ariga, K., Hill, J.P. and Ji, Q. (2007), "Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application", Phys. Chem. Chem. Phys., 9(19), 2319-2340. https://doi.org/10.1039/b700410a
  7. Aroutiounian,V.M, Arakelyan, V.M., Shahnazaryan, G.E., Aleksanyan, M.S., Hernadi, K., Nemeth, Z., Berki, P., Papa, Z., Toth, Z. and Forro, L. (2015), "The ethanol sensors made from ${\alpha}$-$Fe_2O_3$ decorated with multiwall carbon nanotubes", Adv. Nano Res., Int. J., 3(1), 1-11. https://doi.org/10.12989/anr.2015.3.1.001
  8. Ayyappan, S., Mahadevan, S., Chandramohan, P., Srinivasan, M.P., Philip, J. and Raj, B. (2010), "Influence of Co2+ ion concentration on the size, magnetic properties, and purity of $CoFe_2O_4$ spinel ferrite nanoparticles", J. Phys. Chem. C, 114(14), 6334-6341. https://doi.org/10.1021/jp911966p
  9. Balazs, A.C., Emrick, T. and Russel, T.P. (2006), "NNanoparticle polymer composites: Where two small worlds meet", Science, 314(5802), 1107-1110. https://doi.org/10.1126/science.1130557
  10. Begin-Colin, S. and Felder-Flesch, D. (2012), "Functionalizsation of Magnetic Iron Oxide Nanoparticles", In: Magnetic Nanoparticles from Fabrication to Clinical Applications, (N.T.K. Thank Ed.), CRC Press Taylor & Francis Group, Boca Raton, FL, USA, pp. 151-191.
  11. Blums, E., Cebers, A. and Maiorov, M.M. (1985), Magnetic Fluids, Walter de Gruyter, Berlin, Germany.
  12. Bourgeois, F., Gergaud, P., Renevier, H., Leclere, C. and Feuillet, G. (2013), "Low temperature oxidation mechanisms of nanocrystalline magnetite thin film", J. Appl. Phys., 113(1), 013510. https://doi.org/10.1063/1.4772714
  13. Bruchez, M. Jr., Moronne, M., Gin, P., Weiss, S. and Alivisatos, A.P. (1998), "Semiconductor nanocrystals as fluorescent biological labels", Science, 281(5385), 2013-2016. https://doi.org/10.1126/science.281.5385.2013
  14. Butt, F.A. and Jafri, S.M.M. (2015), "Effect of nucleating agents and stabilisers on the synthesis of Iron-Oxide Nanoparticles-XRD analysis", Adv. Nano Res., Int. J., 3(3), 169-176 https://doi.org/10.12989/anr.2015.3.3.169
  15. Chen, Y.P., Zou, M., Qi, C., Xie, M.-X., Wang, D.-N., Wang, Y.-F., Xue, Q., Li, J.-F. and Chen, Y. (2013), "Immunosensor based on magnetic relaxation switch and biotin-streptavidin system for the detection of kanamycin in milk", Biosens. Bioelectron., 39(1), 112-117. https://doi.org/10.1016/j.bios.2012.06.056
  16. Chourpa, I., Douziech-Eyrolles, L., Ngaboni-Okassa, L., Fouquenet, J.-F., Cohen-Jonathan, S., Souce, M., Marchais, H. and Dubois, P. (2005), "Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy", Analyst, 130(10), 1395-1403. https://doi.org/10.1039/b419004a
  17. Correa-Duarte, M.A., Giersig, M., Kotov, N.A. and Liz-Marzan, L.M. (1998), "Control of Packing Order of Self-Assembled Monolayers of Magnetite Nanoparticles with and without $SiO_2$ Coating by Microwave Irradiation", Langmuir, 14(22), 6430-6435. https://doi.org/10.1021/la9805342
  18. da Silva, S.W., Melo, T., Soler, M.A.G., Da Silva, M.F., Lima, E.C.D. and Morais, P.C. (2003), "Stability of citrate-coated magnetite and cobalt-ferrite nanoparticles under laser irradiation: a Raman spectroscopy investigation", IEEE Trans. Magn., 39(5), 2645-2647. https://doi.org/10.1109/TMAG.2003.815540
  19. Dalpozzo, R. (2015), "Magnetic nanoparticle supports for asymmetric catalysts", Green Chem., 17(7), 3671-3686. https://doi.org/10.1039/C5GC00386E
  20. Decher, G. (1997), "Fuzzy nanoassemblies: toward layered polymeric multicomposites", Science, 277(5330), 1232-1237. https://doi.org/10.1126/science.277.5330.1232
  21. Decher, G., Hong, J.D. and Schmitt, J. (1992), "Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces", Thin Sol. Films, 210, 831-835.
  22. Dey, S., Mohanta, K. and Pal, A.J. (2010), "Magnetic-field-assisted layer-by-layer electrostatic assembly of ferromagnetic nanoparticles", Langmuir, 26(12), 9627-9631. https://doi.org/10.1021/la101132z
  23. Ferreira, M. and Rubner, M.F. (1995), "Molecular-level processing of conjugated polymers. 1. Layer-bylayer manipulation of conjugated polyons", Macromolecules, 28(21), 7107-7114. https://doi.org/10.1021/ma00125a012
  24. Gao, Z., Ma, T., Zhao, E., Docter, D., Yang, W., Stauber, R.H. and Gao, M. (2016), "Small is smarter: nano MRI contrast agents-advantages and recent achievements", Small, 12(5), 556-576. https://doi.org/10.1002/smll.201502309
  25. Grassian, V.H. (2008), "When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments", J. Phys. Chem. C, 112(47), 18303-18213. https://doi.org/10.1021/jp806073t
  26. Grigoriev, D., Gorin, D. Sukhorukov, G.B., Yashchenok, A., Maltseva, E. and Mohwald, H. (2007), "Polyelectrolyte/magnetite nanoparticle multilayers: Preparation and structure characterization", Langmuir, 23(24), 12388-12396. https://doi.org/10.1021/la700963h
  27. Gross, M.A., Sales, M.J.A., Soler, M.A.G., Pereira-da-Silva, M.A., da Silva, M.F.P. and Paterno, L.G. (2014), "Reduced graphene oxide multilayers for gas and liquid phases chemical sensing", RSC Adv., 4(34), 17917-17924. https://doi.org/10.1039/c4ra01469c
  28. Hammond, P.T. (2004), "Form and function in multilayer assembly: New applications at the nanoscale", Adv. Mater., 16(15), 1271-1293. https://doi.org/10.1002/adma.200400760
  29. Han, U., Seo, Y. and Hong, J. (2016), "Effect of pH on the structure and drug release profiles of layer-by-layer assembled films containing polyelectrolyte, micelles, and graphene oxide", Sci. Rep., 6, 24158. https://doi.org/10.1038/srep24158
  30. Ho, D., Sun, X. and Sun, S. (2011), "Monodisperse magnetic nanoparticles for theranostic applications", Acc. Chem. Res., 44(10), 875-882. https://doi.org/10.1021/ar200090c
  31. Huang, W.-S., Humphrey, B.D. and MacDiarmid, A.G. (1986), "Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes", J. Chem. Soc. Faraday Trans., 1, 82(8), 2385-2400. https://doi.org/10.1039/f19868202385
  32. Jolivet, J.-P., Cassaignon, S., Chaneac, C., Chiche, D., Durupthy, O. and Portehault, D. (2010), "Design of metal oxide nanoparticles: control of size, shape, crystalline structure and functionalization by aqueous chemistry", Compte-Rendu de Chimie de l'Academie des Sciences, 13(1), 40-51. https://doi.org/10.1016/j.crci.2009.09.012
  33. Kang, Y.S., Risbud, S., Rabolt, J.F. and Stroeve, P. (1996), "Synthesis and characterization of nanometersize $Fe_3O_4$ and ${\gamma}-Fe_2O_3$ particles", Chem. Mater., 8(9), 2209-2211. https://doi.org/10.1021/cm960157j
  34. Kim, H.S., Sohn, B.H., Lee, W., Lee, J.-K., Choi, S.J. and Kwon, S.J. (2002), "Multifunctional layer-bylayer self-assembly of conducting polymers and magnetic nanoparticles", Thin Solid Films, 419(1), 173-177. https://doi.org/10.1016/S0040-6090(02)00779-4
  35. Ko, Y., Shin, D., Koo, B., Lee, S.W., Yoon, W.S. and Cho, J. (2015), "Ultrathin supercapacitor electrodes with high volumetric capacitance and stability using direct covalent-bonding between pseudocapacitive nanoparticles and conducting materials", Nano Energy, 12, 612-625. https://doi.org/10.1016/j.nanoen.2015.01.002
  36. Kurtinaitienė, M., Mazeika, K., Ramanavicius, S., Pakstas, V. and Jagminas, A. (2016), "Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles", Adv. Nano Res., Int. J., 4(1), 1-14.
  37. Leite, F.L., Paterno, L.G., Borato, C.E., Herrmann, P.S.P, Oliveira, O.N. and Mattoso, L.H.C. (2005), "Study on the adsorption of poly (o-ethoxyaniline) nanostructured films using atomic force microscopy", Polymer, 46(26), 12503-12510. https://doi.org/10.1016/j.polymer.2005.07.108
  38. Letti, C.J., Paterno, L.G., Pereira-da-Silva, M.A., Morais, P.C. and Soler, M.A.G. (2017), "The role of polymer films on the oxidation of magnetite nanoparticles", J. Solid. State. Chem., 246, 57-64. https://doi.org/10.1016/j.jssc.2016.10.027
  39. Lvov, Y.K., Ariga, I., Ichinose, I. and Kunitake, T. (1995), "Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption", J. Am. Chem. Soc., 117(22), 6117-6123. https://doi.org/10.1021/ja00127a026
  40. Magnani, M., Galluzzi, L. and Bruce, I.J. (2006), "The use of magnetic nanoparticles in the development of new molecular detection systems", J. Nanosc. Nanotech., 6(8), 1-10.
  41. Mamedov, A. Ostrander, J., Aliev, F. and Kotov, N.A. (2000), "Stratified assemblies of magnetite nanoparticles and montmorillonite prepared by the layer-by-layer assembly", Langmuir, 16(8), 3941-3949. https://doi.org/10.1021/la990957j
  42. Marinica, O., Susan-Resiga, D., Balanean, F., Vizman, D., Socoliuc, V. and Vekas, L. (2016), "Nano-micro composite magnetic fluids: Magnetic and magnetorheological evaluation for rotating seal and vibration damper applications", J. Magn. Magn. Mater., 406, 134-143. https://doi.org/10.1016/j.jmmm.2015.12.095
  43. Massart, R., Dubois, E., Cabuil, V. and Hasmonay, E. (1995), "Preparation and properties of monodisperse magnetic fluids", J. Magn. Magn. Mater., 149(1-2), 1-5. https://doi.org/10.1016/0304-8853(95)00316-9
  44. Mattoso, L.H.C., Zucolotto, V., Paterno, L.G., van Griethuijsen, R., Ferreira, M., Campana, S.P. and Oliveira, Jr. O.N. (1995), "Self-assembly films of polyacids and doped poly (o-alkoxyanilines)", Synth. Met., 71(1-3), 2037-2038. https://doi.org/10.1016/0379-6779(94)03154-X
  45. Melo, T.F.O., da Silva, S.W., Soler, M.A.G., Lima, E.C.D. and Morais, P.C. (2006), "Investigation of surface passivation process on magnetic nanoparticles by Raman spectroscopy", Surf. Sci., 600(18), 3642-3645. https://doi.org/10.1016/j.susc.2006.02.055
  46. Morais, P.C, da Silva, S.W., Soler, M.A.G. and Buske, N. (2000), "Raman investigation of uncoated and coated magnetic fluids", J. Phys. Chem. A, 104(13), 2894-2896. https://doi.org/10.1021/jp9937306
  47. Nan, Q., Li, P. and Cao, B. (2016), "Fabrication of positively charged nanofiltration membrane via the layerby-layer assembly of graphene oxide and polyethylenimine for desalination", Appl. Surf. Sci., 387, 521-528. https://doi.org/10.1016/j.apsusc.2016.06.150
  48. Neumann, R.F., Bahiana, M., Paterno, L.G., Soler, M.A.G., Sinnecker, J.P, Wen, J.G. and Morais, P.C. (2013), "Morphology and magnetism of multifunctional nanostructured ${\gamma}$-$Fe_2O_3$ films: Simulation and experiments", J. Magn. Magn. Mater., 347, 26-32. https://doi.org/10.1016/j.jmmm.2013.07.054
  49. O'Neal, J.T., Bolen, M.J., Dai, E.Y. and Lutkenhaus, J.L. (2017), "Hydrogen-bonded polymer nanocomposites containing discrete layers of gold nanoparticles", J. Colloid Interf. Sci., 485, 260-268. https://doi.org/10.1016/j.jcis.2016.09.044
  50. Paterno, L.G. and Mattoso, L.H.C. (2001), "Effect of pH on the preparation of self-assembled films of poly (o-ethoxyaniline) and sulfonated lignin", Polymer, 42(12), 5239-5245. https://doi.org/10.1016/S0032-3861(01)00005-2
  51. Paterno, L.G. and Soler, M.A.G. (2013), "Layer-by-layer enabled nanomaterials for chemical sensing and energy conversion", Jom, 65(6), 709-719. https://doi.org/10.1007/s11837-013-0608-1
  52. Paterno, L.G., Soler, M.A.G., Fonseca, F.J., Sinnecker, J.P., Sinnecker, E.H.C.P., Lima, E.C.D., Novak, M.A. and Morais, P.C. (2009a), "Layer-by-layer assembly of bifunctional nanofilms: Surfacefunctionalized maghemite hosted in polyaniline", J. Phys. Chem. C, 113(13), 5087-5095. https://doi.org/10.1021/jp8092463
  53. Paterno, L.G., Alcantara, G.B., Fonseca, F.J., Soler, M.A.G., Sinnecker, J.P., Novak, M.A., Lima, E.C.D. and Morais, P.C. (2009b), "Fabrication and characterization of nanostructured conducting polymer films containing magnetic nanoparticles", Thin Solid Films, 517(5), 1753-1758. https://doi.org/10.1016/j.tsf.2008.09.062
  54. Paterno, L.G., Soler, M.A.G., Fonseca, F.J., Sinnecker, J.P., Sinnecker, E.H.C.P., Lima, E.C.D., Bao, S.N., Novak, M.A. and Morais, P.C. (2010), "Magnetic nanocomposites fabricated via the layer-by-layer approach", J. Nanosci. Nanotech., 10(4), 2679-2685. https://doi.org/10.1166/jnn.2010.1411
  55. Paterno, L.G, Sinnecker, E.H.C.P., Soler, M.A.G., Sinnecker, J.P., Novak, M.A. and Morais, P.C. (2012), "Tuning of magnetic dipolar interactions of maghemite nanoparticles embedded in polyelectrolyte layerby-layer films", J. Nanosci. Nanotechnol., 12(8), 6672-6678. https://doi.org/10.1166/jnn.2012.4554
  56. Patrocinio, A.O.T., Paterno, L.G. and Ilha, N.Y.M. (2010), "Role of polyelectrolyte for layer-by-layer compact $TiO_2$ films in efficiency enhanced dye-sensitized solar cells", J. Phys. Chem. C, 114(41), 17954-17959. https://doi.org/10.1021/jp104751g
  57. Park, S. (2009), "Preparation of iron oxides using ammonium iron citrate precursor: Thin films and nanoparticles", J. Solid. State. Chem., 182(9), 2456-2460. https://doi.org/10.1016/j.jssc.2009.06.027
  58. Pereira, A., Alves, S., Casanova, M., Zucolotto, V. and Bechtold, I.H. (2010), "The use of colloidal ferrofluid as building blocks for nanostructured layer-by-layer films fabrication", J. Nanopart. Res., 12(8), 2779-2785. https://doi.org/10.1007/s11051-010-9855-z
  59. Philip, J. and Laskar, J.M. (2012), "Optical properties and applications of ferrofluids-A review", J. Nanofluids, 1(1), 3-20. https://doi.org/10.1166/jon.2012.1002
  60. Pichon, B.P., Louet, P., Felix, O., Drillon, M., Begin-Colin, S. and Decher, G. (2011), "Magnetotunable hybrid films of stratified iron oxide nanoparticles assembled by the layer-by-layer technique", Chem. Mater., 231(16), 3668-3675.
  61. Qu, F. and Morais, P.C. (2000), "An oxide semiconductor nanoparticle in an aqueous medium: A surface charge density investigation", J. Phys. Chem. B, 104(22), 5232-5236. https://doi.org/10.1021/jp993783n
  62. Santos, J.G., Souza, J.R., Letti, C.J., Soler, M.A.G., Morais, P.C., Pereira-da-Silva, M.A. and Paterno, L.G. (2014), "Iron oxide nanostructured electrodes for detection of copper (II) ions", J. Nanosci. Nanotechnol., 14(9), 6614-6623. https://doi.org/10.1166/jnn.2014.9379
  63. Schwertmann, U. and Cornell, R.M. (1991), Iron Oxides in the Laboratory: Preparation and Characterization, VCH Publishers, New York, NY, USA.
  64. Seo, S., Lee, S. and Park, Y.P. (2016), "Automatic layer-by-layer spraying system for functional thin film coatings", Rev. Sci. Instrum., 87(3), 036110. https://doi.org/10.1063/1.4945043
  65. Soler, M.A.G. and Fanyao, Q. (2012), "Raman Spectroscopy of Iron Oxide Nanoparticles", In: Raman Spectroscopy for Nanomaterials Characterization, Springer-Verlag, Berlin, Germany, pp. 379-417.
  66. Soler, M.A.G. and Paterno, L.G. (2017), "Magnetic Nanoparticles", In: Nanostructures, (O.N. Oliveira, Jr., M. Ferreira, A.L. Da Roz and F.L. Leite), Elsevier, pp. 147-186.
  67. Soler, M.A.G., Silva, S.W., Garg, V.K, Oliveira, A.C., Azevedo, R.B., Pimenta, A.C.M., Lima, E.C.D. and Morais, P.C. (2005), "Surface passivation and characterization of cobalt-ferrite nanoparticles", Surf. Sci., 575(1), 12-16. https://doi.org/10.1016/j.susc.2004.11.005
  68. Soler, M.A.G., Lima, E.C.D., Silva, S.W., Melo, T.F.O., Pimenta, A.C.M., Sinnecker, J.P., Azevedo, R.B., Garg, V.K. Oliveira, A.C., Novak, M.A. and Morais, P.C. (2007), "Aging investigation of cobalt ferrite nanoparticles in low pH magnetic fluid", Langmuir, 23(19), 9611-9617. https://doi.org/10.1021/la701358g
  69. Soler, M.A.G., Lima, E.C.D., Nunes, E.S., Silva, F.L.R., Oliveira, A.C., Azevedo, R.B. and Morais, P.C. (2011), "Spectroscopic study of maghemite nanoparticles surface-grafted with DMSA", J. Phys. Chem. A, 115(6), 1003-1008. https://doi.org/10.1021/jp1109916
  70. Soler, M.A.G., Paterno, L.G., Sinnecker, J.P., Wen, J.G., Sinnecker, E.H.C.P., Neumann, R.F., Bahiana, M., Novak, M.A. and Morais, P.C. (2012a), "Assembly of ${\gamma}$-$Fe_2O_3$/polyaniline nanofilms with tuned dipolar interaction", J. Nanopart. Res., 14(3), 653. https://doi.org/10.1007/s11051-011-0653-z
  71. Soler, M.A., Paterno, L.G. and Morais, P.C. (2012b), "Layer-by-layer assembly of magnetic nanostructures", J. Nanofluids, 1(2), 101-119. https://doi.org/10.1166/jon.2012.1015
  72. Suda, M., Miyazaki, Y., Hagiwara, Y., Sato, O., Shiratori, S. and Einaga, Y. (2005), "Photoswitchable magnetic layer-by-layer films consisting of azobenzene derivatives and iron oxide nanoparticles", Chem. Lett., 34(7), 1028-1029. https://doi.org/10.1246/cl.2005.1028
  73. Sun, Z., Du, J., Yan, L., Chen, S., Yang, Z. and Jing, C. (2016), "Multifunctional $Fe_3O_4$@$SiO_2$- Au satellite structured SERS probe for charge selective detection of food dyes", ACS Appl. Mater. Interfaces, 8(5), 3056-3062. https://doi.org/10.1021/acsami.5b10230
  74. Thuy, T.T. (2012), Next Generation Magnetic Nanoparticles for Biomedical Applications. Magnetic Nanoparticles from Fabrication to Clinical Applications, (Edited by N.T.K. Thanh), Taylor & Francis Group, Boca Raton, FL, USA.
  75. Toulemon, D., Rastei, M.V., Schmool, D., Garitaonandia, J.S., Lezama, L., Cattoen, X., Begin-Colin, S. and Pichon, B.P. (2016), "Enhanced collective magnetic properties induced by the controlled assembly of iron oxide nanoparticles in chains", Adv. Funct. Mater., 26(15), 2454-2462. https://doi.org/10.1002/adfm.201505086
  76. Trahms, L. (2010), "Biomedical Applications of Magnetic Nanoparticles", In: Colloidal Mangetic Fluids, (S. Odenbach Ed.), Verlag, Berlim Weidelberg, pp. 328-358.
  77. Trudel, S., Crozier, E.D., Gordon, R.A., Budnik, P.S. and Hill, R.H. (2011), "X-ray absorption fine structure study of amorphous metal oxide thin films prepared by photochemical metalorganic deposition", J. Solid. State. Chem., 184(5), 1025-1035. https://doi.org/10.1016/j.jssc.2011.03.015
  78. Viali, W.R., Alcantara, G.B., Sartoratto, P.P.C., Soler, M.A.G., Mosiniewicz-Szablewska, E., Andrzejewski, B. and Morais, P.C. (2010), "Investigation of the molecular surface coating on the stability of insulating magnetic oils", J. Phys. Chem. C, 114(1), 179-188. https://doi.org/10.1021/jp908732b
  79. Xiang, Q., Teixeira, C.B., Sun, L. and Morais, P.C. (2016), "Magnetic nanoparticle film reconstruction modulated by immersion within DMSA aqueous solution", Sci. Rep., 6, 18202. https://doi.org/10.1038/srep18202
  80. Yiu, H.H.P., McBain, S.C., Lethbridge, Z.A.D., Lees, M.R. and Dobson, J. (2010), "Preparation and characterization of polyethylenimine-coated $Fe_3O_4$-MCM-48 nanocomposite particles as a novel agent for magnet-assisted transfection", J. Biomed. Mater. Res. A, 92(1), 386-392.
  81. Wang, Y., Ma, H., Wang, X., Pang, X., Wu, D., Du, B. and Wei, Q. (2015), "Novel Signal Amplification Strategy for Ultrasensitive Sandwich-Type Electrochemical Immunosensor Employing Pd-$Fe_3O_4$-GS as the Matrix and $SiO_2$ as the Label", Biosens. Bioelectron., 74, 59-65. https://doi.org/10.1016/j.bios.2015.06.033
  82. Zarrin, A., Sadighian, S., Rostamizadeh, K., Firuzi, O., Hamidi, M., Mohammadi-Samani, S. and Miri, R. (2016), "Design, preparation, and in vitro characterization of a trimodally-targeted nanomagnetic oncotheranostic system for cancer diagnosis and therapy", Int. J. Pharm., 500(1), 62-76. https://doi.org/10.1016/j.ijpharm.2015.12.051