참고문헌
- Alfano, J. R. and Collmer, A. 2004. Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42:385-414. https://doi.org/10.1146/annurev.phyto.42.040103.110731
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Arnold, R., Brandmaier, S., Kleine, F., Tischler, P., Heinz, E., Behrens, S., Niinikoski, A., Mewes, H. W., Horn, M. and Rattei, T. 2009. Sequence-based prediction of type III secreted proteins. PLoS Pathog. 5:e1000376. https://doi.org/10.1371/journal.ppat.1000376
- Belcaid, M., Kang, Y., Tuanyok, A. and Hoang, T. T. 2015. Complete genome sequence of Burkholderia cepacia strain LO6. Genome Announc. 3:e00587-15.
- Bendtsen, J. D., Jensen, L. J., Blom, N., Von Heijne, G. and Brunak, S. 2004. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng. Des. Sel. 17: 349-356. https://doi.org/10.1093/protein/gzh037
- Bendtsen, J. D., Nielsen, H., Widdick, D., Palmer, T. and Brunak, S. 2005. Prediction of twin-arginine signal peptides. BMC Bioinformatics 6:167. https://doi.org/10.1186/1471-2105-6-167
- Block, A. and Alfano, J. R. 2011. Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys? Curr. Opin. Microbiol. 14:39-46. https://doi.org/10.1016/j.mib.2010.12.011
- Buttner, D. and He, S. Y. 2009. Type III protein secretion in plant pathogenic bacteria. Plant Physiol. 150:1656-1664. https://doi.org/10.1104/pp.109.139089
- Chiba, H., Osanai, M., Murata, M., Kojima, T. and Sawada, N. 2008. Transmembrane proteins of tight junctions. Biochim. Biophys. Acta 1778:588-600. https://doi.org/10.1016/j.bbamem.2007.08.017
- Cho, H. S., Park, S. Y., Ryu, C. M., Kim, J. F., Kim, J. G. and Park, S. H. 2007. Interference of quorum sensing and virulence of the rice pathogen Burkholderia glumae by an engineered endophytic bacterium. FEMS Microbiol. Ecol. 60:14-23. https://doi.org/10.1111/j.1574-6941.2007.00280.x
- Collmer, A. 1998. Determinants of pathogenicity and avirulence in plant pathogenic bacteria. Curr. Opin. Plant Biol. 1:329- 335. https://doi.org/10.1016/1369-5266(88)80055-4
- Costa, T. R., Felisberto-Rodrigues, C., Meir, A., Prevost, M. S., Redzej, A., Trokter, M. and Waksman, G. 2015. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13:343-359. https://doi.org/10.1038/nrmicro3456
- Cunnac, S., Lindeberg, M. and Collmer, A. 2009. Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr. Opin. Microbiol. 12:53-60. https://doi.org/10.1016/j.mib.2008.12.003
- Duarte, X., Anderson, C. T., Grimson, M., Barabote, R. D., Strauss, R. E., Gollahon, L. S. and San Francisco, M. J. 2000. Erwinia chrysanthemi strains cause death of human gastrointestinal cells in culture and express an intimin-like protein. FEMS Microbiol. Lett. 190:81-86. https://doi.org/10.1111/j.1574-6968.2000.tb09266.x
- Engel, A. and Gaub, H. E. 2008. Structure and mechanics of membrane proteins. Annu. Rev. Biochem. 77:127-148. https://doi.org/10.1146/annurev.biochem.77.062706.154450
- Estrada-de los Santos, P., Vinuesa, P., Martinez-Aguilar, L., Hirsch, A. M. and Caballero-Mellado, J. 2013. Phylogenetic analysis of Burkholderia species by multilocus sequence analysis. Curr. Microbiol. 67:51-60. https://doi.org/10.1007/s00284-013-0330-9
- Fang, H. and Gough, J. 2013. DcGO: database of domain-centric ontologies on functions, phenotypes, diseases and more. Nucleic Acids Res. 41:D536-D544. https://doi.org/10.1093/nar/gks1080
- Feng, F. and Zhou, J. M. 2012. Plant-bacterial pathogen interactions mediated by type III effectors. Curr. Opin. Plant Biol. 15:469-476. https://doi.org/10.1016/j.pbi.2012.03.004
- Fouts, D. E., Tyler, H. L., DeBoy, R. T., Daugherty, S., Ren, Q., Badger, J. H., Durkin, A. S., Huot, H., Shrivastava, S., Kothari, S., Dodson, R. J., Mohamoud, Y., Khouri, H., Roesch, L. F., Krogfelt, K. A., Struve, C., Triplett, E. W. and Methe, B. A. 2008. Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet. 4:e1000141. https://doi.org/10.1371/journal.pgen.1000141
- Govan, J. R. and Deretic, V. 1996. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60:539-574.
- Ham, J. H., Melanson, R. A. and Rush, M. C. 2011. Burkholderia glumae: next major pathogen of rice? Mol. Plant Pathol. 12:329-339. https://doi.org/10.1111/j.1364-3703.2010.00676.x
- He, S. Y., Nomura, K. and Whittam, T. S. 2004. Type III protein secretion mechanism in mammalian and plant pathogens. Biochim. Biophys. Acta 1694:181-206. https://doi.org/10.1016/j.bbamcr.2004.03.011
- Holden, M. T., Titball, R. W., Peacock, S. J., Cerdeno-Taraga, A. M., Atkins, T., Crossman, L. C., Pitt, T., Churcher, C., Mungall, K., Bentley, S. D., Sebaihia, M., Thomson, N. R., Bason, N., Beacham, I. R., Brooks, K., Brown, K. A., Brown, N. F., Challis, G. L., Cherevach, I., Chillingworth, T., Cronin, A., Crossett, B., Davis, P., DeShazer, D., Feltwell, T., Fraser, A., Hance, Z., Hauser, H., Holroyd, S., Jagels, K., Keith, K. E., Maddison, M., Moule, S., Price, C., Quail, M. A., Rabbinowitsch, E., Rutherford, K., Sanders, M., Simmonds, M., Songsivilai, S., Stevens, K., Tumapa, S., Vesaratchavest, M., Whitehead, S., Yeats, C., Barrell, B. G., Oyston, P. C. and Parkhill, J. 2004. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc. Natl. Acad. Sci. U. S. A. 101:14240-14245. https://doi.org/10.1073/pnas.0403302101
- Juncker, A. S., Willenbrock, H., Von Heijne, G., Brunak, S., Nielsen, H. and Krogh, A. 2003. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. 12: 1652-1662. https://doi.org/10.1110/ps.0303703
- Kampenusa, I. and Zikmanis, P. 2010. Distinguishable codon usage and amino acid composition patterns among substrates of leaderless secretory pathways from proteobacteria. Appl. Microbiol. Biotechnol. 86:285-293. https://doi.org/10.1007/s00253-009-2423-8
- Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K. F., Itoh, M., Kawashima, S., Katayama, T., Araki, M. and Hirakawa, M. 2006. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34:D354-D357. https://doi.org/10.1093/nar/gkj102
- Kang, Y., Kim, J., Kim, S., Kim, H., Lim, J. Y., Kim, M., Kwak, J., Moon, J. S. and Hwang, I. 2008. Proteomic analysis of the proteins regulated by HrpB from the plant pathogenic bacterium Burkholderia glumae. Proteomics 8:106-121. https://doi.org/10.1002/pmic.200700244
- Krogh, A., Larsson, B., von Heijne, G. and Sonnhammer, E. L. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305:567-580. https://doi.org/10.1006/jmbi.2000.4315
- Kwak, M. J., Song, J. Y., Kim, S. Y., Jeong, H., Kang, S. G., Kim, B. K., Kwon, S. K., Lee, C. H., Yu, D. S., Park, S. H. and Kim, J. F. 2012. Complete genome sequence of the endophytic bacterium Burkholderia sp. strain KJ006. J. Bacteriol. 194:4432-4433. https://doi.org/10.1128/JB.00821-12
- Lee, J., Park, J., Kim, S., Park, I. and Seo, Y. S. 2016. Differential regulation of toxoflavin production and its role in the enhanced virulence of Burkholderia gladioli. Mol. Plant Pathol. 17:65-76. https://doi.org/10.1111/mpp.12262
- Lim, J., Lee, T. H., Nahm, B. H., Choi, Y. D., Kim, M. and Hwang, I. 2009. Complete genome sequence of Burkholderia glumae BGR1. J. Bacteriol. 191:3758-3759. https://doi.org/10.1128/JB.00349-09
- Lopez-Fernandez, S., Sonego, P., Moretto, M., Pancher, M., Engelen, K., Pertot, I. and Campisano, A. 2015. Wholegenome comparative analysis of virulence genes unveils similarities and differences between endophytes and other symbiotic bacteria. Front. Microbiol. 6:419.
- Lower, M. and Schneider, G. 2009. Prediction of type III secretion signals in genomes of Gram-negative bacteria. PLoS One 4:e5917. https://doi.org/10.1371/journal.pone.0005917
- McDermott, J. E., Corrigan, A., Peterson, E., Oehmen, C., Niemann, G., Cambronne, E. D., Sharp, D., Adkins, J. N., Samudrala, R. and Heffron, F. 2011. Computational prediction of type III and IV secreted effectors in Gram-negative bacteria. Infect. Immun. 79:23-32. https://doi.org/10.1128/IAI.00537-10
- Mitter, B., Petric, A., Shin, M. W., Chain, P. S., Hauberg-Lotte, L., Reinhold-Hurek, B., Nowak, J. and Sessitsch, A. 2013. Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front. Plant Sci. 4: 120.
- Moller, S., Croning, M. D. and Apweiler, R. 2001. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646-653. https://doi.org/10.1093/bioinformatics/17.7.646
- Nandakumar, R., Shahjahan, A. K. M., Yuan, X. L., Dickstein, E. R., Groth, D. E., Clark, C. A., Cartwright, R. D. and Rush, M. C. 2009. Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the southern United States. Plant Dis. 93:896-905. https://doi.org/10.1094/PDIS-93-9-0896
- Naughton, L. M., An, S. Q., Hwang, I., Chou, S. H., He, Y. Q., Tang, J. L., Ryan, R. P. and Dow, J. M. 2016. Functional and genomic insights into the pathogenesis of Burkholderia species to rice. Environ. Microbiol. 18:780-790. https://doi.org/10.1111/1462-2920.13189
- Nielsen, H. and Krogh, A. 1998. Prediction of signal peptides and signal anchors by a hidden Markov model. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6:122-130.
- Park, S., Seo, Y. S. and Hegeman, A. D. 2014. Plant metabolomics for plant chemical responses to belowground community change by climate change. J. Plant Biol. 57:137-149. https://doi.org/10.1007/s12374-014-0110-5
- Petersen, T. N., Brunak, S., von Heijne, G. and Nielsen, H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8:785-786. https://doi.org/10.1038/nmeth.1701
- Reinhold-Hurek, B. and Hurek, T. 2011. Living inside plants: bacterial endophytes. Curr. Opin. Plant Biol. 14:435-443. https://doi.org/10.1016/j.pbi.2011.04.004
- Saier, M. H., Jr. 2006. Protein secretion and membrane insertion systems in gram-negative bacteria. J. Membr. Biol. 214:75- 90. https://doi.org/10.1007/s00232-006-0049-7
- Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco- Mosqueda, M. and Glick, B. R. 2016. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183:92-99. https://doi.org/10.1016/j.micres.2015.11.008
- Schell, M. A., Ulrich, R. L., Ribot, W. J., Brueggemann, E. E., Hines, H. B., Chen, D., Lipscomb, L., Kim, H. S., Mrázek, J., Nierman, W. C. and Deshazer, D. 2007. Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol. Microbiol. 64:1466-1485. https://doi.org/10.1111/j.1365-2958.2007.05734.x
- Seo, Y. S., Lim, J., Choi, B. S., Kim, H., Goo, E., Lee, B., Lim, J. S., Choi, I. Y., Moon, J. S., Kim, J. and Hwang, I. 2011. Complete genome sequence of Burkholderia gladioli BSR3. J. Bacteriol. 193:3149. https://doi.org/10.1128/JB.00420-11
- Seo, Y. S., Lim, J. Y., Park, J., Kim, S., Lee, H. H., Cheong, H., Kim, S. M., Moon, J. S. and Hwang, I. 2015. Comparative genome analysis of rice-pathogenic Burkholderia provides insight into capacity to adapt to different environments and hosts. BMC Genomics 16:349. https://doi.org/10.1186/s12864-015-1558-5
- Shalom, G., Shaw, J. G. and Thomas, M. S. 2007. In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology 153:2689-2699. https://doi.org/10.1099/mic.0.2007/006585-0
- Stevens, T. J. and Arkin, I. T. 2000. Do more complex organisms have a greater proportion of membrane proteins in their genomes? Proteins 39:417-420. https://doi.org/10.1002/(SICI)1097-0134(20000601)39:4<417::AID-PROT140>3.0.CO;2-Y
- Tay, D. M., Govindarajan, K. R., Khan, A. M., Ong, T. Y., Samad, H. M., Soh, W. W., Tong, M., Zhang, F. and Tan, T. W. 2010. T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System. BMC Bioinformatics 11 Suppl 7:S4.
- Tseng, T. T., Tyler, B. M. and Setubal, J. C. 2009. Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol. 9 Suppl 1:S2. https://doi.org/10.1186/1471-2180-9-S1-S2
- Ura, H. Furuya, N., Iiyama, K., Hidaka, M., Tsuchiya, K. and Matsuyama, N. 2006. Burkholderia gladioli associated with symptoms of bacterial grain rot and leaf-sheath browning of rice plants. J. Gen. Plant Pathol. 72:98-103. https://doi.org/10.1007/s10327-005-0256-6
- van Baarlen, P., van Belkum, A., Summerbell, R. C. , Crous, P. W. and Thomma, B. P. 2007. Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? FEMS Microbiol. Rev. 31:239- 277. https://doi.org/10.1111/j.1574-6976.2007.00065.x
- Weilharter, A., Mitter, B., Shin, M. V., Chain, P. S., Nowak, J. and Sessitsch, A. 2011. Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J. Bacteriol. 193:3383-3384. https://doi.org/10.1128/JB.05055-11
- Weisskopf, L., Heller, S. and Eberl, L. 2011. Burkholderia species are major inhabitants of white lupin cluster roots. Appl. Environ. Microbiol. 77:7715-7720. https://doi.org/10.1128/AEM.05845-11
- Wiersinga, W. J., van der Poll, T., White, N. J., Day, N. P. and Peacock, S. J. 2006. Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nat. Rev. Microbiol. 4: 272-282. https://doi.org/10.1038/nrmicro1385
- Xia, Y., DeBolt, S., Dreyer, J., Scott, D. and Williams, M. A. 2015. Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front. Plant Sci. 6:490.
- Xu, X. H., Su, Z. Z., Wang, C., Kubicek, C. P., Feng, X. X., Mao, L. J., Wang, J. Y., Chen, C., Lin, F. C. and Zhang, C. L. 2014. The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte. Sci. Rep. 4:5783.
피인용 문헌
- The chirality of imazethapyr herbicide selectively affects the bacterial community in soybean field soil pp.1614-7499, 2019, https://doi.org/10.1007/s11356-018-3736-x
- Green Technology: Bacteria-Based Approach Could Lead to Unsuspected Microbe–Plant–Animal Interactions vol.7, pp.2, 2019, https://doi.org/10.3390/microorganisms7020044