DOI QR코드

DOI QR Code

Correlation between the Dieback Ratio and Cultivation Environment for Apple Orchards Infected by Soil-Borne Diseases in Chungbuk Province

충북에서 사과 주요 토양병에 의한 고사율과 재배환경과의 상관관계

  • Lee, Sung-Hee (Bureau of Research & Development, Chungcheongbuk-do Agricultural Research & Extension Services) ;
  • Kwon, Yeuseok (Bureau of Research & Development, Chungcheongbuk-do Agricultural Research & Extension Services) ;
  • Shin, Hyunman (Bureau of Research & Development, Chungcheongbuk-do Agricultural Research & Extension Services) ;
  • Kim, Ik-Jei (Bureau of Research & Development, Chungcheongbuk-do Agricultural Research & Extension Services) ;
  • Nam, Sang-Young (Bureau of Research & Development, Chungcheongbuk-do Agricultural Research & Extension Services) ;
  • Hong, Eui Yon (Bureau of Research & Development, Chungcheongbuk-do Agricultural Research & Extension Services) ;
  • Kim, Daeil (College of Agriculture, Life & Environment Sciences, Chungbuk National University) ;
  • Cha, Jae-Soon (College of Agriculture, Life & Environment Sciences, Chungbuk National University)
  • 이성희 (충청북도농업기술원 연구개발국) ;
  • 권의석 (충청북도농업기술원 연구개발국) ;
  • 신현만 (충청북도농업기술원 연구개발국) ;
  • 김익제 (충청북도농업기술원 연구개발국) ;
  • 남상영 (충청북도농업기술원 연구개발국) ;
  • 홍의연 (충청북도농업기술원 연구개발국) ;
  • 김대일 (충북대학교 농업생명환경대학) ;
  • 차재순 (충북대학교 농업생명환경대학)
  • Received : 2016.10.17
  • Accepted : 2017.01.06
  • Published : 2017.03.31

Abstract

The previous study showed that die-back of apple trees caused by soil-borne diseases was significantly high in the apple orchards in Chungbuk province. The correlation between dieback ratio and cultivation environment in apple orchards infected by soil-borne diseases was investigated in this study. The dieback ratio of five orchards diseased by violet root rot and five places infected by white root rot showed significantly positive correlation with Ca content and available $P_2O_5$ content in soil, respectively. Whereas, the dieback ratio of fourteen orchards diseased by Phytophthora root rot was not significant. Subgrouping of cultivation environment analysis showed that the slope degree of orchard and the number of fruit setting also affected the dieback ratio caused by violet root rot and Ca content in soil also affected the dieback ratio caused by white root rot. It showed that the slope degree, soil texture, Mg and Ca content affected the dieback ratio caused by Phytophthora root rot. These results can be applied to reduce die-back ratio by the modification cultivation environment for each soil-borne disease.

이전 연구에서 충북지방의 사과과수원에서 토양병에 의한 사과나무 고사율이 매우 높게 나타났다. 본 연구에서는 토양병에 의한 사과나무 고사율과 재배환경과의 상관관계를 조사하였다. 자주날개무늬병에 의한 사과나무 고사율은 토양 내 칼슘 함량과 유의하게 정의 상관관계를 보였고, 흰날개무늬병에 의한 사과나무 고사율은 토양 내 유효 인산 함량과 유의하게 정의 상관관계를 보였다. 반면에 역병 피해 사과원 14개소에서는 사과나무 고사율과 재배환경과는 유의성 있는 상관관계가 없었다. 세분화한 재배환경과의 상관관계 분석결과는 토양 내 칼슘함량 외에 과원 경사도와 착과수가 자주날개무늬병에 의한 고사율에 영향을 미쳤고, 토양 내 유효인산 함량 외에 칼슘 함량이 흰날개무늬병에 의한 고사율에 영향을 미쳤다. 과원경사도, 토성, 마그네슘과 칼슘 함량이 사과역병에 의한 고사율에 영향을 주었다. 이 결과는 사과과원의 재배법 변경에 의해 토양병에 의한 사과나무 고사율을 감소시키는 데 적용 가능할 것이다.

Keywords

References

  1. Aoki, J. and Shimodaira, M. 1959. Studies on the root rot of mulberry trees, caused by Helicobasidium Mompa TANAKA and Rosellinia necatrix (HARTIG) BERLESE. (II) Influence of carbon, nitrogen source and phosphate on the growth of two causal fungi. J. Seric. Sci. Jpn. 28: 125-129.
  2. Elliott, C. G. 1972. Calcium chloride and growth and reproduction of Phytophthora cactorum. Trans. Br. Mycol. Soc. 58: 169-172. https://doi.org/10.1016/S0007-1536(72)80084-6
  3. Fletcher, J. 1979. An ultrastructural investigation into the role of calcium in oospore-initial development in Saprolegnia diclina. J. Gen. Mycrobiol. 113: 315-326. https://doi.org/10.1099/00221287-113-2-315
  4. Gisi, U., Oertli, J. J. and Schwinn, F. J. 1977. Wasser- und Salzbeziehungen der Sporangien von Phytophthora cactorum (Leb. et Cohn) Schroet. in vitro. J. Phytopathol. 89: 261-284. https://doi.org/10.1111/j.1439-0434.1977.tb02867.x
  5. Huber, D. M. and Jones, J. B. 2013. The role of magnesium in plant disease. Plant Soil 368: 73-85. https://doi.org/10.1007/s11104-012-1476-0
  6. Jee, H. J., Cho, W. D. and Kim, C. H. 2000. Phytophthora diseases in Korea. Rural Development Administration, Suwon, Korea. 226pp.
  7. Jee, H. J., Cho, W. D. and Kim, W. G. 1997. Phytophthora diseases of apple in Korea: I. Occurrence of a destructive collar rot caused by P. cactorum. Korean J. Plant Pathol. 13: 139-144.
  8. Koohakan, P., Ikeda, H., Jaenaksorn, T., Tojo, M. and Kusakari, S. I. 2002. Effects of inorganic elements on the in-vitro growth of Pythium aphanidermatum (Edson) Fitzp. Microbes Environ. 17: 91-97. https://doi.org/10.1264/jsme2.2002.91
  9. Lee, D. H. 2002. Etiology and ecology of apple white root rot, caused by Rosellinia necatrix and its biological control. Ph.D. thesis. Kyungpook National University, Daegu, Korea.
  10. Lee, D. H., Choi, K. H. and Uhm, J. Y. 2009. Cytochalasin E production by Rosellinia necatrix and its pathogenicity on apple. Res. Plant Dis. 15: 46-50. (In Korean) https://doi.org/10.5423/RPD.2009.15.1.046
  11. Lee, S. B. 1995. Etiology and epidemiology of white- and violetroot rot caused by Rosellinia necatrix and Helicobasidium mompa on apple tree and their control in Korea. Ph.D. thesis. Chungbuk National University, Cheongju, Korea.
  12. Lee, S. B., Chung, B. K., Jang, H. I., Kim, K. H. and Choi, Y. M. 1995. Incidence of soil-borne diseases in apple orchards in Korea. Korean J. Plant Pathol. 11: 132-138. (In Korean)
  13. Lee, S. H., Kwon, Y., Shin, H., Kim, I. J., Nam, S. Y., Hong, E. Y., Kwon, S. I., Kim, D. and Cha, J. S. 2016. Dieback of apple tree by major soil borne diseases in Chungbuk province from 2013 to 2015. Res. Plant Dis. 22: 198-201. (In Korean) https://doi.org/10.5423/RPD.2016.22.3.198
  14. McCann, M. and Stuart, M. 1973. The effect of calcium on sexual reproduction in Saprolegnia diclina. Proc. Soc. Gen. Microbiol. 1: 33.
  15. [NAAS] National Academy of Agricultural Science. 2010. Method of soil chemical analysis. NAAS, Rural Development Administration, Jeonju, Korea.
  16. [NIAST] National Institute of Agricultural Science and Technology 2000. Methods of soil and plant analysis. NIAST, Rural Development Administration, Jeonju, Korea.
  17. [RDA] Rural Development Administration. 2003. Apple Cultivation. 5th ed. RDA, Jeonju, Korea. 443 pp.
  18. Sato, N. 1994. Effect of some inorganic salts and hydrogen ion concentration on indirect germination of the sporangia of Phytophthora infestans. Ann. Phytopathol. Soc. Jpn. 60: 441-447. https://doi.org/10.3186/jjphytopath.60.441
  19. Wilsdorf, R. E., Theron, K. I. and LoTZE, E. 2012. Evaluating the effectiveness of different strategies for calcium application on the accumulation of calcium in apple (Malus ${\times}$ domestica Borkh. 'Braeburn') fruit. J. Hortic. Sci. Biotechnol. 87: 565-570. https://doi.org/10.1080/14620316.2012.11512912
  20. Yamane, T. 2014. Foliar calcium applications for controlling fruit disorders and storage life in deciduous fruit trees. Jpn. Agric. Res. Q.: JARQ 48: 29-33. https://doi.org/10.6090/jarq.48.29
  21. Yamazaki, H. 2001. Relation between resistance to bacterial wilt and calcium nutrition in tomato seedlings. Jpn. Agric. Res. Q.: JARQ 35: 163-169. https://doi.org/10.6090/jarq.35.163
  22. Yang, C. Y.-D. and Mitchell, J. E. 1965. Cation effect on reproduction of Pythium spp. Phytopathology 55: 1127-1131.
  23. Yokosawa, R., Kuninaga, S., Sakushima, A. and Sekizaki, H. 1995. Induction of oospore formation of Aphanomyces euteiches Drechsler by calcium ion. Ann. Phytopathol. Soc. Jpn. 61: 434-438. https://doi.org/10.3186/jjphytopath.61.434