DOI QR코드

DOI QR Code

Ultra-structural Observations of Colletotrichum orbiculare on Cucumber Leaves Pre-treated with Chlorella fusca

Chlorella fusca를 전처리한 오이 잎에서 오이탄저병균의 초미세 감염구조 관찰

  • Lee, Yun Ju (College of Applied Life Science and Sustainable Agriculture Research Institute (SARI), Jeju National University) ;
  • Kim, Su Jeong (Biotech Center, Pohang University of Science and Technology (POSTECH)) ;
  • Jeun, Yong Chull (College of Applied Life Science and Sustainable Agriculture Research Institute (SARI), Jeju National University)
  • 이윤주 (제주대학교 생명자원과학대학, 친환경농업연구소) ;
  • 김수정 (포항공과대학교 생명공학연구센터) ;
  • 전용철 (제주대학교 생명자원과학대학, 친환경농업연구소)
  • Received : 2017.01.17
  • Accepted : 2017.02.13
  • Published : 2017.03.31

Abstract

Chlorella is one of the microorganisms which can live autotrophically by their own photosynthesis. It was previously revealed that pre-treatment of Chlorella fusca caused a suppression of appressorium formation on the cucumber leaves after inoculation with Colletothrichum orbiculare. In this study, the ultrastructures of C. orbiculare on the cucumber leaves pretreated with C. fusca were observed using both scanning electron microscope (SEM) and transmission electron microscope (TEM). The SEM images revealed that most fungal conidia and hyphae were attached with lots of C. fusca cells. Also, the conidia could germinate but not form appressorium, which is necessary to penetrate into host tissue. These observations suggested that C. fusca adjoined to the fungus may play a role in suppression of the appressorium formation. On the other hand, the observations of TEM showed no remarkable cytological differences on the ultrastructures of the intracellular hyphae between in the pre-treated and untreated leaves. It seemed that the fungus could grow in the pre-treated plant tissues as in the untreated one. Based on these observations, it is suggested that the suppression of appressorium on the leaf surfaces by the C. fusca cells may be a main cause of the reduction of the anthracnose disease.

Chlorella는 광합성을 통해 자가영양하는 미생물이다. 이전 연구를 통해 Chlorella fusca를 전처리한 오이 잎에서 오이 탄저병균의 부착기 형성률이 억제됨을 밝혔다. 본 연구에서는 SEM 및 TEM을 통해 C. fusca를 전처리한 잎에서 오이탄저병균의 초미세 감염구조를 관찰하였다. SEM 이미지에서는 대부분의 병원균 포자와 균사 주위에 많은 수의 C. fusca 세포가 관찰되었다. 또한 포자는 발아되었으나 식물조직에 침입하는 데 필요한 부착기는 형성되지 않았다. 이를 통하여 병원균 주위에 있는 C. fusca 세포가 병원균 부착기 형성을 억제하는 데 역할을 할 것으로 생각되었다. 한편, TEM 이미지를 통한 병원균 균사 내부의 초미세 구조에서는 C. fusca를 전처리한 잎과 무처리한 잎 간에 별다른 차이가 관찰되지 않았다. 이는 전처리한 식물에서 병원균은 무처리한 잎과 유사하게 성장하는 것으로 보인다. 이들 결과를 통하여 C. fusca에 의한 식물 표면에서의 병원균 부착기 형성 억제가 오이탄저병 감소의 원인인 것으로 판단된다.

Keywords

References

  1. Agrios, G. N. 2005. Plant Pathology. 5th ed. Academic Press, San Diego, CA, USA.
  2. Bailey, J. A., O'Connell, R. J., Pring, R. J. and Nash, C. 1996. Infection strategies of Colletotrichum species. In: Colletotrichum: Biology, Pathology and Control, eds. by J. A. Bailey and M. J. Jeger, pp. 88-120. CAB International, Wallingford, UK.
  3. Bechinger, C., Giebel, K. F., Schnell, M., Leiderer, P., Deising, H. B. and Bastmeyer, M. 1999. Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus. Science 285: 1896-1899. https://doi.org/10.1126/science.285.5435.1896
  4. Chumley, F. G. and Valent, B. 1990. Genetic analysis of melanindeficient, nonpathogenic mutants of Magnaporthe grisea. Mol. Plant-Microbe Interact. 3: 135-143. https://doi.org/10.1094/MPMI-3-135
  5. Gan, P., Ikeda, K., Irieda, H., Narusaka, M., O'Connell, R. J., Narusaka, Y., Takano, Y., Kubo, Y. and Shirasu, K. 2013. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol. 197: 1236-1249. https://doi.org/10.1111/nph.12085
  6. Hayat, M. A. 1989. Principles and Techniques of Electron Microscopy: Biologacal Applications. 3rd ed. CRC Press, Boca Raton, FL, USA.
  7. Howard, R. J. and Ferrari, M. A. 1989. Role of melanin in appressorium function. Exp. Mycol. 13: 403-418. https://doi.org/10.1016/0147-5975(89)90036-4
  8. Jeun, Y. C., Kim, K. W., Kim, K. D. and Hyun, J. W. 2007. Comparative ultrastructure of cucumbers pretreated with plant growthpromoting rhizobacteria, DL-3-aminobutyric acid or amino salicylic acid after inoculation with Colletotrichum orbiculare. J. Phytopathol. 155: 416-425. https://doi.org/10.1111/j.1439-0434.2007.01252.x
  9. Kang, M. S., Sim, S. J. and Chae, H. J. 2004. Chlorella as a functional biomaterial. Korean J. Biotechnol. Bioeng. 19: 1-11.
  10. Kim, M. J., Shim, C. K., Kim, Y. K., Park, J. H., Hong, S. J., Ji, H. J., Han, E. J. and Yoon, J. C. 2014. Effect of Chlorella vulgaris CHK0008 fertilization on enhancement of storage and freshness in organic strawberry and leaf vegetables. Korean J. Hortic. Sci. Technol. 32: 872-878. https://doi.org/10.7235/hort.2014.14107
  11. Kim, S. Y., Hyun, J. W. and Jeun, Y. C. 2011. Suppression effect and mechanism of citrus scab in the citrus pre-inoculated with rhizobacterial strains. Res. Plant Dis. 17: 302-310. (In Korean) https://doi.org/10.5423/RPD.2011.17.3.302
  12. Kubo, Y., Fujihara, N., Harata, K., Neumann, U., Robin, G. P. and O'Connell, R. 2015. Colletotrichum orbiculare FAM1 encodes a novel Woronin body-associated Pex22 peroxin required for appressorium-mediated plant infection. MBio 6: e01305-15.
  13. Lee, Y. J., Ko, Y. J. and Jeun, Y. C. 2016. Illustration of disease suppression of anthracnose on cucumber leaves by treatment with Chlorella fusca. Res. Plant Dis. 22: 257-263. (In Korean) https://doi.org/10.5423/RPD.2016.22.4.257
  14. O'Connell, R. J., Thon, M. R., Hacquard, S., Amyotte, S. G., Kleemann, J., Torres, M. F., Damm, U., Buiate, E. A., Epstein, L., Alkan, N., Altmuller, J., Alvarado-Balderrama, L., Bauser, C. A., Becker, C., Birren, B. W., Chen, Z., Choi, J., Crouch, J. A., Duvick, J. P., Farman, M. A., Gan, P., Heiman, D., Henrissat, B., Howard, R. J., Kabbage, M., Koch, C., Kracher, B., Kubo, Y., Law, A. D., Lebrun, M. H., Lee, Y. H., Miyara, I., Moore, N., Neumann, U., Nordstrom, K., Panaccione, D. G., Panstruga, R., Place, M., Proctor, R. H., Prusky, D., Rech, G., Reinhardt, R., Rollins, J. A., Rounsley, S., Schardl, C. L., Schwartz, D. C., Shenoy, N., Shirasu, K., Sikhakolli, U. R., Stuber, K., Sukno, S. A., Sweigard, J. A., Takano, Y., Takahara, H., Trail, F., van der Does, H. C., Voll, L. M., Will, I., Young, S., Zeng, Q., Zhang, J., Zhou, S., Dickman, M. B., Schulze-Lefert, P., Ver Loren van Themaat, E., Ma, L. J. and Vaillancourt, L. J. 2012. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat. Genet. 44: 1060-1065. https://doi.org/10.1038/ng.2372
  15. Pathan, A. K., Bond, J. and Gaskin, R. E. 2008. Sample preparation for scanning electron microscopy of plant surfaces--horses for courses. Micron 39: 1049-1061. https://doi.org/10.1016/j.micron.2008.05.006
  16. Perfect, S. E., Hughes, H. B., O'Connell, R. J. and Green, J. R. 1999. Colletotrichum: a model genus for studies on pathology and fungal-plant interactions. Fungal Genet. Biol. 27: 186-198. https://doi.org/10.1006/fgbi.1999.1143
  17. Safi, C., Zebib, B., Merah, O., Pontalier, P. Y. and Vaca-Garcia, C. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew. Sustain. Energy Rev. 35: 265-278. https://doi.org/10.1016/j.rser.2014.04.007
  18. Shaaban, M. M. 2001. Green microalgae water extract as foliar feeding to wheat plants. Pak. J. Biol. Sci. 4: 628-632. https://doi.org/10.3923/pjbs.2001.628.632