Abstract
In this paper, finite element stamping analysis was carried out for the front lower arm to examine the applicability of solid element with damage theory to predict shear fracture phenomena induced by sheared edge as well as deformation mechanisms. Mechanical properties related to deformation and damage theory were determined from tensile test. Shear fracture was predicted by normalized Cockcroft-Latham model with initial imposition of the damage value along the sheared edge. Simulation results illustrated that the analysis with solid element and damage theory predicted edge profile, strain distribution, and forming load more accurately than the analysis with shell element. Simulation with solid element can also predict the shear fracture more exactly comparing to analysis with shell element and forming limit curve.