DOI QR코드

DOI QR Code

High Efficiency Hybrid Ion Exchange Chemical Filter for Removal of Acidic Harmful Gases

산성유해가스 제거를 위한 고효율 음이온교환 복합 폼 화학필터의 제조

  • Jung, Youn Seo (Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, In Sik (Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Hyeon, Seung Mi (Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Hwang, Taek Sung (Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 정윤서 (충남대학교 공과대학 응용화학공학과) ;
  • 김인식 (충남대학교 공과대학 응용화학공학과) ;
  • 현승미 (충남대학교 공과대학 응용화학공학과) ;
  • 황택성 (충남대학교 공과대학 응용화학공학과)
  • Received : 2017.07.14
  • Accepted : 2017.08.30
  • Published : 2017.10.10

Abstract

In this study, an outstanding anion exchange chemical filter was prepared for acidic gas removal. Commercial anion exchange resin was attached to polyurethane (PU) foam by using different types of pressure sensitive adhesive (PSA). The water and chemical resistance and also adhesive elongation were investigated. Also, the behavior of HCl and HF adsorption was evaluated as functions of the initial concentration and flow rate. ATE-701, AT-4000C and HCA-1000 showed 900, 1,500% and 2,400% of the elongation, respectively. It was confirmed that the desorption ratio of HCA-1000 was less than 6% and had excellent durability in water and chemical resistance tests. The adsorption occurred faster as the concentration and flow rate of HCl and HF increased. But 100% adsorption equilibrium occurred after 110 minutes, regardless of the concentration and flow rate. In addition, SEM morphology showed that the adhesive was uniformly dispersed, while the porous structure of the ion exchange resin was maintained, and the chemical filter exhibited excellent durability for the adsorption/desorption process.

본 연구는 산성유해가스 제거를 위한 고효율 음이온교환 복합 폼 화학필터를 제조하기 위하여 폴리우레탄(PU) foam에 다른 종류의 PSA를 사용하여 상용이온교환수지를 부착하여 제조, 이의 내수성, 내화학성, 접착신율, 농도와 유속에 따른 HCl과 HF의 흡착특성에 관하여 연구하였다. 그 결과 접착신율은 ATE-701은 900%, AT-4000C는 1,500%, HCA-1000는 2,400%이며, 내수성 및 내화학성평가에서 HCA-1000의 탈리율이 6% 미만으로 우수한 내구성을 가짐을 확인하였다. HCl, HF의 농도와 유속이 증가함에 따라 흡착이 빠르게 일어났으며 유속과 농도에 관계없이 110 min 이후 100% 흡착파과평형이 일어남을 확인할 수 있었다. 또한 SEM Morphology 관찰 결과 점착제가 고르게 분산되어 있고 이온교환수지의 다공구조가 유지되었으며, 흡-탈착 공정에서 성능저하가 없는 것으로 보아 내구성이 있음을 확인하였다.

Keywords

References

  1. J. G. Gang, J. K. Lee, K. H. Lee, and H. S. Chun, Minimization of dioxins in municipal waste incineration processes, J. Korea Solid Wastes Eng. Soc., 11, 630-644 (1994).
  2. S. C. Kwak, J. G. Gang, W. H. Kim, J. K. Lee, K. H. Lee, and H. S. Chun, Formation characteristics of dioxins in municipal waste incineration, J. Korea Solid Wastes Eng. Soc., 11, 645-662 (1994).
  3. J. Andrieu and J. M. Smith, Adsorption rates for sulfur dioxide and hydrogen sulfide in beds of activated carbon, AlChE J., 27, 840-842 (1981). https://doi.org/10.1002/aic.690270520
  4. H. M. Chein, T. M. Chen, S. G. Aggarwal, C. J. Tsai, and C. C. Huang, Inorganic acid emission factors of semiconductor manufacturing processes, J Air Waste Manag. Assoc., 54, 218-228 (2004). https://doi.org/10.1080/10473289.2004.10470898
  5. C. Q. Lu and D. D. Do, Preparation of economical sorbents for $SO_2$ and $NO_x$ removal using coal washery reject, Carbon, 29, 207-213 (1991). https://doi.org/10.1016/0008-6223(91)90071-P
  6. E. C. Moretti and N. Mukhopadhyay, VOC control: Current practices and future trends, Chem. Eng. Prog., 89, 20-26 (1993).
  7. S. Brosillon, M. H. Manero, and J. N. Foussard, Mass transfer in VOC adsorption on zeolite: Experimental and theoretical breakthrough curves, Environ. Sci. Technol., 35, 3571-3575 (2001). https://doi.org/10.1021/es010017x
  8. F. Rezaei and P. Webley, Structured adsorbents in gas separation processes, Sep. Purif. Technol., 70, 243-256 (2010). https://doi.org/10.1016/j.seppur.2009.10.004
  9. S. Y. Lee and S. J. Park, A review on solid adsorbents for carbon dioxide capture, Ind. Eng. Chem., 23, 1-11 (2015). https://doi.org/10.1016/j.jiec.2014.09.001
  10. Spiro D. Alexandratos, Ion-exchange resins: A retrospective from industrial and engineering chemistry research, Ind. Eng. Chem. Res., 48, 388-398 (2009). https://doi.org/10.1021/ie801242v
  11. Y. S. Kim, T. S. Hwang, H. K. Lee, J. W. Park, and S. M. Kim, Removal of toxic gases on strong/and weak-base anion exchange fibers, Ind. Eng. Chem., 10, 504-510 (2004).
  12. S. W. Park, H. G. Lee, Y. W. Rhee, B. Y. Jung, and T. S. Hwang, Preparation of hybrid cation ion exchange fibers by web spray and their adsorption properties for ammonia gas, Polymer (Korea), 31, 479-484 (2007).
  13. T. S. Hwang, Y. S. Kim, J. W. Park, and H. K. Lee, Adsorption properties of $SO_2$ on pan-based fibrous ion exchanger and its potential for air purification, Ind. Eng. Chem., 10, 139-145 (2004).
  14. H. Watanabe, K. Fugikata, Y. Oaki, and H. Imai, Dynamic adsorption of toluene on pore-size tuned supermicroporous silicas, Microporous Mesoporous Mater., 214, 41-44 (2015). https://doi.org/10.1016/j.micromeso.2015.04.034
  15. T. S. Hwang, J. E. Choi, and K. S. Kang, Adsorption properties of $SO_2$ using fibrous strong-base anionic ion exchange scrubber, Polymer (Korea), 26, 661-669 (2002).
  16. S. Meenakshi and N. Viswanathan, Identification of selective ion-exchange resin for fluoride sorption, J. Colloid Interface Sci., 308, 438-450 (2007). https://doi.org/10.1016/j.jcis.2006.12.032
  17. I. G. Park, M. S. Hong, B. S. Kim, and H. G. Kang, Ambient $CO_2$ Adsorption and regeneration performance of zeolite and activated carbon, J. Korean Soc. Environ. Eng., 35, 307-311 (2013). https://doi.org/10.4491/KSEE.2013.35.5.307