References
- Goo HW. CT radiation dose optimization and estimation: an update for radiologists. Korean J Radiol 2012;13:1-11 https://doi.org/10.3348/kjr.2012.13.1.1
- Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol 2007;17:1510-1517 https://doi.org/10.1007/s00330-006-0517-6
- Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 1973;46:1016-1022 https://doi.org/10.1259/0007-1285-46-552-1016
- Johnson TR. Dual-energy CT: general principles. AJR Am J Roentgenol 2012;199(5 Suppl):S3-S8 https://doi.org/10.2214/AJR.12.9116
- McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and multienergy CT: principles, technical approaches, and clinical applications. Radiology 2015;276:637-653 https://doi.org/10.1148/radiol.2015142631
- Maturen KE, Kaza RK, Liu PS, Quint LE, Khalatbari SH, Platt JF. "Sweet spot" for endoleak detection: optimizing contrast to noise using low keV reconstructions from fast-switch kVp dual-energy CT. J Comput Assist Tomogr 2012;36:83-87 https://doi.org/10.1097/RCT.0b013e31824258cb
- Faby S, Kuchenbecker S, Sawall S, Simons D, Schlemmer HP, Lell M, et al. Performance of today's dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: a simulation study. Med Phys 2015;42:4349-4366 https://doi.org/10.1118/1.4922654
- Mileto A, Barina A, Marin D, Stinnett SS, Roy Choudhury K, Wilson JM, et al. Virtual monochromatic images from dual-energy multidetector CT: variance in CT numbers from the same lesion between single-source projection-based and dual-source image-based implementations. Radiology 2016;279:269-277 https://doi.org/10.1148/radiol.2015150919
- Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol 2012;199(5 Suppl):S9-S15 https://doi.org/10.2214/AJR.12.9121
- Leng S, Yu L, Fletcher JG, McCollough CH. Maximizing iodine contrast-to-noise ratios in abdominal CT imaging through use of energy domain noise reduction and virtual monoenergetic dual-energy CT. Radiology 2015;276:562-570 https://doi.org/10.1148/radiol.2015140857
- Albrecht MH, Trommer J, Wichmann JL, Scholtz JE, Martin SS, Lehnert T, et al. Comprehensive comparison of virtual monoenergetic and linearly blended reconstruction techniques in third-generation dual-source dual-energy computed tomography angiography of the thorax and abdomen. Invest Radiol 2016;51:582-590 https://doi.org/10.1097/RLI.0000000000000272
- Wichmann JL, Gillott MR, De Cecco CN, Mangold S, Varga-Szemes A, Yamada R, et al. Dual-energy computed tomography angiography of the lower extremity runoff: impact of noiseoptimized virtual monochromatic imaging on image quality and diagnostic accuracy. Invest Radiol 2016;51:139-146 https://doi.org/10.1097/RLI.0000000000000216
- Pomerantz SR, Kamalian S, Zhang D, Gupta R, Rapalino O, Sahani DV, et al. Virtual monochromatic reconstruction of dual-energy unenhanced head CT at 65-75 keV maximizes image quality compared with conventional polychromatic CT. Radiology 2013;266:318-325 https://doi.org/10.1148/radiol.12111604
- Agrawal MD, Pinho DF, Kulkarni NM, Hahn PF, Guimaraes AR, Sahani DV. Oncologic applications of dual-energy CT in the abdomen. Radiographics 2014;34:589-612 https://doi.org/10.1148/rg.343135041
- Bongers MN, Schabel C, Thomas C, Raupach R, Notohamiprodjo M, Nikolaou K, et al. Comparison and combination of dualenergy-and iterative-based metal artefact reduction on hip prosthesis and dental implants. PLoS One 2015;10:e0143584 https://doi.org/10.1371/journal.pone.0143584
- Garcia LI, Azorin JF, Almansa JF. A new method to measure electron density and effective atomic number using dualenergy CT images. Phys Med Biol 2016;61:265-279 https://doi.org/10.1088/0031-9155/61/1/265
- Chen CY, Hsu JS, Jaw TS, Shih MC, Lee LJ, Tsai TH, et al. Split-bolus portal venous phase dual-energy CT urography: protocol design, image quality, and dose reduction. AJR Am J Roentgenol 2015;205:W492-W501 https://doi.org/10.2214/AJR.14.13687
- De Cecco CN, Darnell A, Rengo M, Muscogiuri G, Bellini D, Ayuso C, et al. Dual-energy CT: oncologic applications. AJR Am J Roentgenol 2012;199(5 Suppl):S98-S105 https://doi.org/10.2214/AJR.12.9207
- Chae EJ, Song JW, Seo JB, Krauss B, Jang YM, Song KS. Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 2008;249:671-681 https://doi.org/10.1148/radiol.2492071956
- Lee HA, Lee YH, Yoon KH, Bang DH, Park DE. Comparison of virtual unenhanced images derived from dual-energy CT with true unenhanced images in evaluation of gallstone disease. AJR Am J Roentgenol 2016;206:74-80 https://doi.org/10.2214/AJR.15.14570
- Krauss B, Grant KL, Schmidt BT, Flohr TG. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency. Invest Radiol 2015;50:114-118 https://doi.org/10.1097/RLI.0000000000000109
- Luo XF, Xie XQ, Cheng S, Yang Y, Yan J, Zhang H, et al. Dualenergy CT for patients suspected of having liver iron overload: can virtual iron content imaging accurately quantify liver iron content? Radiology 2015;277:95-103 https://doi.org/10.1148/radiol.2015141856
- Omoumi P, Verdun FR, Guggenberger R, Andreisek G, Becce F. Dual-energy CT: basic principles, technical approaches, and applications in musculoskeletal imaging (part 2). Semin Musculoskelet Radiol 2015;19:438-445 https://doi.org/10.1055/s-0035-1569252
- Pache G, Krauss B, Strohm P, Saueressig U, Blanke P, Bulla S, et al. Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions--feasibility study. Radiology 2010;256:617-624 https://doi.org/10.1148/radiol.10091230
- McLaughlin PD, Mallinson P, Lourenco P, Nicolaou S. Dualenergy computed tomography: advantages in the acute setting. Radiol Clin North Am 2015;53:619-638, vii https://doi.org/10.1016/j.rcl.2015.02.016
- Thieme SF, Johnson TR, Lee C, McWilliams J, Becker CR, Reiser MF, et al. Dual-energy CT for the assessment of contrast material distribution in the pulmonary parenchyma. AJR Am J Roentgenol 2009;193:144-149 https://doi.org/10.2214/AJR.08.1653
- Goo HW. Initial experience of dual-energy lung perfusion CT using a dual-source CT system in children. Pediatr Radiol 2010;40:1536-1544 https://doi.org/10.1007/s00247-010-1759-7
- Otrakji A, Digumarthy SR, Lo Gullo R, Flores EJ, Shepard JA, Kalra MK. Dual-energy CT: spectrum of thoracic abnormalities. Radiographics 2016;36:38-52 https://doi.org/10.1148/rg.2016150081
- Hong YJ, Kim JY, Choe KO, Hur J, Lee HJ, Choi BW, et al. Different perfusion pattern between acute and chronic pulmonary thromboembolism: evaluation with two-phase dualenergy perfusion CT. AJR Am J Roentgenol 2013;200:812-817 https://doi.org/10.2214/AJR.12.8697
- Iyer KS, Newell JD Jr, Jin D, Fuld MK, Saha PK, Hansdottir S, et al. Quantitative dual-energy computed tomography supports a vascular etiology of smoking-induced inflammatory lung disease. Am J Respir Crit Care Med 2016;193:652-661 https://doi.org/10.1164/rccm.201506-1196OC
- Baxa J, Matouskova T, Krakorova G, Schmidt B, Flohr T, Sedlmair M, et al. Dual-phase dual-energy CT in patients treated with erlotinib for advanced non-small cell lung cancer: possible benefits of iodine quantification in response assessment. Eur Radiol 2016;26:2828-2836 https://doi.org/10.1007/s00330-015-4092-6
- Kim SJ, Lim HK, Lee HY, Choi CG, Lee DH, Suh DC, et al. Dualenergy CT in the evaluation of intracerebral hemorrhage of unknown origin: differentiation between tumor bleeding and pure hemorrhage. AJNR Am J Neuroradiol 2012;33:865-872 https://doi.org/10.3174/ajnr.A2890
- Tijssen MP, Hofman PA, Stadler AA, van Zwam W, de Graaf R, van Oostenbrugge RJ, et al. The role of dual energy CT in differentiating between brain haemorrhage and contrast medium after mechanical revascularisation in acute ischaemic stroke. Eur Radiol 2014;24:834-840 https://doi.org/10.1007/s00330-013-3073-x
- Jin KN, De Cecco CN, Caruso D, Tesche C, Spandorfer A, Varga-Szemes A, et al. Myocardial perfusion imaging with dual energy CT. Eur J Radiol 2016;85:1914-1921 https://doi.org/10.1016/j.ejrad.2016.06.023
- Hur J, Kim YJ, Lee HJ, Nam JE, Hong YJ, Kim HY, et al. Cardioembolic stroke: dual-energy cardiac CT for differentiation of left atrial appendage thrombus and circulatory stasis. Radiology 2012;263:688-695 https://doi.org/10.1148/radiol.12111691
- Ascenti G, Mazziotti S, Lamberto S, Bottari A, Caloggero S, Racchiusa S, et al. Dual-energy CT for detection of endoleaks after endovascular abdominal aneurysm repair: usefulness of colored iodine overlay. AJR Am J Roentgenol 2011;196:1408-1414 https://doi.org/10.2214/AJR.10.4505
- Goo HW, Chae EJ, Seo JB, Hong SJ. Xenon ventilation CT using a dual-source dual-energy technique: dynamic ventilation abnormality in a child with bronchial atresia. Pediatr Radiol 2008;38:1113-1116 https://doi.org/10.1007/s00247-008-0914-x
- Chae EJ, Seo JB, Goo HW, Kim N, Song KS, Lee SD, et al. Xenon ventilation CT with a dual-energy technique of dualsource CT: initial experience. Radiology 2008;248:615-624 https://doi.org/10.1148/radiol.2482071482
- Park EA, Goo JM, Park SJ, Lee HJ, Lee CH, Park CM, et al. Chronic obstructive pulmonary disease: quantitative and visual ventilation pattern analysis at xenon ventilation CT performed by using a dual-energy technique. Radiology 2010;256:985-997 https://doi.org/10.1148/radiol.10091502
- Chae EJ, Seo JB, Lee J, Kim N, Goo HW, Lee HJ, et al. Xenon ventilation imaging using dual-energy computed tomography in asthmatics: initial experience. Invest Radiol 2010;45:354-361
- Goo HW, Yu J. Redistributed regional ventilation after the administration of a bronchodilator demonstrated on xenoninhaled dual-energy CT in a patient with asthma. Korean J Radiol 2011;12:386-389 https://doi.org/10.3348/kjr.2011.12.3.386
- Kim WW, Lee CH, Goo JM, Park SJ, Kim JH, Park EA, et al. Xenon-enhanced dual-energy CT of patients with asthma: dynamic ventilation changes after methacholine and salbutamol inhalation. AJR Am J Roentgenol 2012;199:975-981 https://doi.org/10.2214/AJR.11.7624
- Goo HW, Yang DH, Hong SJ, Yu J, Kim BJ, Seo JB, et al. Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results. Pediatr Radiol 2010;40:1490-1497 https://doi.org/10.1007/s00247-010-1645-3
- Goo HW, Yang DH, Kim N, Park SI, Kim DK, Kim EA. Collateral ventilation to congenital hyperlucent lung lesions assessed on xenon-enhanced dynamic dual-energy CT: an initial experience. Korean J Radiol 2011;12:25-33 https://doi.org/10.3348/kjr.2011.12.1.25
- Honda N, Osada H, Watanabe W, Nakayama M, Nishimura K, Krauss B, et al. Imaging of ventilation with dual-energy CT during breath hold after single vital-capacity inspiration of stable xenon. Radiology 2012;262:262-268 https://doi.org/10.1148/radiol.11110569
- Goo HW. Dual-energy lung perfusion and ventilation CT in children. Pediatr Radiol 2013;43:298-307 https://doi.org/10.1007/s00247-012-2465-4
- Yoon SH, Goo JM, Jung J, Hong H, Park EA, Lee CH, et al. Computer-aided classification of visual ventilation patterns in patients with chronic obstructive pulmonary disease at twophase xenon-enhanced CT. Korean J Radiol 2014;15:386-396 https://doi.org/10.3348/kjr.2014.15.3.386
- Hachulla AL, Pontana F, Wemeau-Stervinou L, Khung S, Faivre JB, Wallaert B, et al. Krypton ventilation imaging using dualenergy CT in chronic obstructive pulmonary disease patients: initial experience. Radiology 2012;263:253-259 https://doi.org/10.1148/radiol.12111211
- Hong SR, Chang S, Im DJ, Suh YJ, Hong YJ, Hur J, et al. Feasibility of single scan for simultaneous evaluation of regional krypton and iodine concentrations with dual-energy CT: an experimental study. Radiology 2016;281:597-605 https://doi.org/10.1148/radiol.16152429
- Qu M, Ramirez-Giraldo JC, Leng S, Williams JC, Vrtiska TJ, Lieske JC, et al. Dual-energy dual-source CT with additional spectral filtration can improve the differentiation of nonuric acid renal stones: an ex vivo phantom study. AJR Am J Roentgenol 2011;196:1279-1287 https://doi.org/10.2214/AJR.10.5041
- Li X, Zhao R, Liu B, Yu Y. Gemstone spectral imaging dualenergy computed tomography: a novel technique to determine urinary stone composition. Urology 2013;81:727-730 https://doi.org/10.1016/j.urology.2013.01.010
- Coupal TM, Mallinson PI, Gershony SL, McLaughlin PD, Munk PL, Nicolaou S, et al. Getting the most from your dual-energy scanner: recognizing, reducing, and eliminating artifacts. AJR Am J Roentgenol 2016;206:119-128 https://doi.org/10.2214/AJR.14.13901
- Schulz B, Kuehling K, Kromen W, Siebenhandl P, Kerl MJ, Vogl TJ, et al. Automatic bone removal technique in whole-body dual-energy CT angiography: performance and image quality. AJR Am J Roentgenol 2012;199:W646-W650 https://doi.org/10.2214/AJR.12.9176
- Lee CW, Seo JB, Song JW, Kim MY, Lee HY, Park YS, et al. Evaluation of computer-aided detection and dual energy software in detection of peripheral pulmonary embolism on dual-energy pulmonary CT angiography. Eur Radiol 2011;21:54-62 https://doi.org/10.1007/s00330-010-1903-7
- Atak H, Shikhaliev PM. Dual energy CT with photon counting and dual source systems: comparative evaluation. Phys Med Biol 2015;60:8949-8975 https://doi.org/10.1088/0031-9155/60/23/8949
- Pourmorteza A, Symons R, Sandfort V, Mallek M, Fuld MK, Henderson G, et al. Abdominal imaging with contrastenhanced photon-counting CT: first human experience. Radiology 2016;279:239-245 https://doi.org/10.1148/radiol.2016152601
- Yu Z, Leng S, Jorgensen SM, Li Z, Gutjahr R, Chen B, et al. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array. Phys Med Biol 2016;61:1572-1595 https://doi.org/10.1088/0031-9155/61/4/1572
Cited by
- Can quantitative iodine parameters on DECT replace perfusion CT parameters in colorectal cancers? vol.28, pp.11, 2017, https://doi.org/10.1007/s00330-018-5502-3
- Measurement of Vascular Diameter in Computed Tomography Angiography With Reduced Iodine Load: Comparison of Virtual Monochromatic Imaging in Dual-Energy Computed Tomography and Conventional Polychrom vol.42, pp.6, 2017, https://doi.org/10.1097/rct.0000000000000769
- Accuracy of Quantification of Iodine and Hounsfield Unit Values on Virtual Monochromatic Imaging Using Dual-Energy Computed Tomography: Comparison of Dual-Layer Computed Tomography With Fast Kilovolt vol.42, pp.6, 2017, https://doi.org/10.1097/rct.0000000000000798
- Image Decomposition Algorithm for Dual-Energy Computed Tomography via Fully Convolutional Network vol.2018, pp.None, 2017, https://doi.org/10.1155/2018/2527516
- Two Small Intravenous Catheters for High-Rate Contrast Medium Injection for Computed Tomography in Patients Lacking Superficial Veins to Accommodate a Large Catheter vol.19, pp.3, 2017, https://doi.org/10.3348/kjr.2018.19.3.489
- Optimal Monochromatic Imaging of Spectral Computed Tomography Potentially Improves the Quality of Hepatic Vascular Imaging vol.19, pp.4, 2017, https://doi.org/10.3348/kjr.2018.19.4.578
- Comparison of Filtered Back Projection, Hybrid Iterative Reconstruction, Model-Based Iterative Reconstruction, and Virtual Monoenergetic Reconstruction Images at Both Low- and Standard-Dose Settings i vol.19, pp.4, 2017, https://doi.org/10.3348/kjr.2018.19.4.809
- Iodine Quantification on Spectral Detector-Based Dual-Energy CT Enterography: Correlation with Crohn's Disease Activity Index and External Validation vol.19, pp.6, 2017, https://doi.org/10.3348/kjr.2018.19.6.1077
- Comparison of Iodine Density Measurement Among Dual-Energy Computed Tomography Scanners From 3 Vendors vol.53, pp.6, 2017, https://doi.org/10.1097/rli.0000000000000446
- Machine learning-based dual-energy CT parametric mapping vol.63, pp.12, 2017, https://doi.org/10.1088/1361-6560/aac711
- A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology vol.20, pp.12, 2019, https://doi.org/10.3348/kjr.2019.0928
- Dual energy CT and research of the bone marrow edema: Comparison with MRI imaging vol.29, pp.4, 2017, https://doi.org/10.4103/ijri.ijri_243_19
- Linear analysis of single-shot dual-energy computed tomography with a multilayer detector vol.14, pp.1, 2017, https://doi.org/10.1088/1748-0221/14/01/c01022
- Detection of Lumbar Spine Osseous Metastases Using Dual-Energy CT: Phantom Results and Preliminary Clinical Validation vol.212, pp.2, 2017, https://doi.org/10.2214/ajr.18.19933
- Optimal Kiloelectron Volt for Noise-Optimized Virtual Monoenergetic Images of Dual-Energy Pediatric Abdominopelvic Computed Tomography: Preliminary Results vol.20, pp.2, 2019, https://doi.org/10.3348/kjr.2017.0507
- User-Friendly Vendor-Specific Guideline for Pediatric Cardiothoracic Computed Tomography Provided by the Asian Society of Cardiovascular Imaging Congenital Heart Disease Study Group: Part 1. Imaging T vol.20, pp.2, 2017, https://doi.org/10.3348/kjr.2018.0571
- A Bismuth Metal-Organic Framework as a Contrast Agent for X-ray Computed Tomography vol.2, pp.3, 2019, https://doi.org/10.1021/acsabm.8b00778
- Dual‐energy CT iodine quantification for characterizing focal thyroid lesions vol.41, pp.4, 2017, https://doi.org/10.1002/hed.25524
- Comparison of Lipid and Water Contents by Time-domain Diffuse Optical Spectroscopy and Dual-energy Computed Tomography in Breast Cancer Patients vol.9, pp.7, 2019, https://doi.org/10.3390/app9071482
- Dual-Energy CT in Children: Imaging Algorithms and Clinical Applications vol.291, pp.2, 2017, https://doi.org/10.1148/radiol.2019182289
- Exploring light confinement in laser-processed LYSO:Ce for photon counting CT application vol.64, pp.9, 2019, https://doi.org/10.1088/1361-6560/ab1213
- Identification of epidermal growth factor receptor mutations in pulmonary adenocarcinoma using dual-energy spectral computed tomography vol.29, pp.6, 2017, https://doi.org/10.1007/s00330-018-5756-9
- Prognostic Significance of CT-Attenuation of Tumor-Adjacent Breast Adipose Tissue in Breast Cancer Patients with Surgical Resection vol.11, pp.8, 2019, https://doi.org/10.3390/cancers11081135
- Third-generation dual-source dual-energy CT in pediatric congenital heart disease patients: state-of-the-art vol.124, pp.12, 2017, https://doi.org/10.1007/s11547-019-01097-7
- Evaluation of dual energy CT and iterative metal artefact reduction (iMAR) for artefact reduction in radiation therapy vol.42, pp.4, 2019, https://doi.org/10.1007/s13246-019-00801-1
- Value of virtual monochromatic spectral image of dual-layer spectral detector CT with noise reduction algorithm for image quality improvement in obese simulated body phantom vol.19, pp.1, 2017, https://doi.org/10.1186/s12880-019-0367-8
- Dual-energy spectral CT characteristics in surgically resected lung adenocarcinoma: comparison between Kirsten rat sarcoma viral oncogene mutations and epidermal growth factor receptor mutations vol.19, pp.1, 2017, https://doi.org/10.1186/s40644-019-0261-1
- Utilization of virtual low-keV monoenergetic images generated using dual-layer spectral detector computed tomography for the assessment of peritoneal seeding from ovarian cancer vol.99, pp.23, 2020, https://doi.org/10.1097/md.0000000000020444
- Prognostic Value of Dual-Energy CT-Based Iodine Quantification versus Conventional CT in Acute Pulmonary Embolism: A Propensity-Match Analysis vol.21, pp.9, 2020, https://doi.org/10.3348/kjr.2019.0645
- Application of Dual-Energy Spectral Computed Tomography to Thoracic Oncology Imaging vol.21, pp.7, 2017, https://doi.org/10.3348/kjr.2019.0711
- Characteristics of Recent Articles Published in the Korean Journal of Radiology Based on the Citation Frequency vol.21, pp.12, 2020, https://doi.org/10.3348/kjr.2020.1322
- Multi‐“Color” Delineation of Bone Microdamages Using Ligand‐Directed Sub‐5 nm Hafnia Nanodots and Photon Counting CT Imaging vol.30, pp.4, 2017, https://doi.org/10.1002/adfm.201904936
- An overview of non-invasive imaging modalities for diagnosis of solid and cystic renal lesions vol.58, pp.1, 2017, https://doi.org/10.1007/s11517-019-02049-z
- Image Quality and Dose Comparison of Single-Energy CT (SECT) and Dual-Energy CT (DECT) vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/1403957
- Advances in Diagnosis and Treatment of Pancreatic Cancer vol.9, pp.2, 2017, https://doi.org/10.12677/hjs.2020.92002
- Neuroimaging of Intracerebral Hemorrhage vol.86, pp.5, 2017, https://doi.org/10.1093/neuros/nyaa029
- Dual energy CT: a step ahead in brain and spine imaging vol.93, pp.1109, 2020, https://doi.org/10.1259/bjr.20190872
- Diagnostic performance of multidetector computed tomographic (MDCTU) in upper tract urothelial carcinoma (UTUC): a systematic review and meta-analysis vol.38, pp.5, 2017, https://doi.org/10.1007/s00345-019-02875-8
- Diagnostic accuracy of dual-energy CT for detection of bone marrow lesions in the subacutely injured knee with MRI as reference method vol.61, pp.6, 2020, https://doi.org/10.1177/0284185119877343
- Radiological imaging in multiple myeloma: review of the state-of-the-art vol.62, pp.8, 2017, https://doi.org/10.1007/s00234-020-02417-9
- Quantitative imaging performance of MARS spectral photon‐counting CT for radiotherapy vol.47, pp.8, 2017, https://doi.org/10.1002/mp.14204
- Experimental research of the energy bins for K-edge imaging using a photon counting detector: a phantom and mice study vol.4, pp.3, 2020, https://doi.org/10.1007/s41605-020-00184-y
- Impact of iterative reconstructions on image quality and detectability of focal liver lesions in low-energy monochromatic images vol.77, pp.None, 2017, https://doi.org/10.1016/j.ejmp.2020.07.024
- Update on Multienergy CT: Physics, Principles, and Applications vol.40, pp.5, 2017, https://doi.org/10.1148/rg.2020200038
- Improvement with the Multi-material Decomposition Framework in Dual-energy Computed Tomography: A Phantom Study vol.77, pp.6, 2017, https://doi.org/10.3938/jkps.77.515
- Radiomics analysis of dual-energy CT-derived iodine maps for diagnosing metastatic cervical lymph nodes in patients with papillary thyroid cancer vol.30, pp.11, 2020, https://doi.org/10.1007/s00330-020-06866-x
- Reduction in Irradiation Dose in Aperture Coded Enhanced Computed Tomography Imager Using Super-Resolution Techniques vol.20, pp.22, 2017, https://doi.org/10.3390/s20226551
- Dual-energy CT perfusion imaging for differentiating WHO subtypes of thymic epithelial tumors vol.10, pp.None, 2017, https://doi.org/10.1038/s41598-020-62466-1
- Improved detectability of hypoattenuating focal pancreatic lesions by dual-layer computed tomography using virtual monoenergetic images vol.51, pp.1, 2020, https://doi.org/10.1186/s43055-020-00270-7
- Visibility of bronchial arteries using virtual and advanced virtual monoenergetic imaging vol.61, pp.12, 2017, https://doi.org/10.1177/0284185120923992
- Material decomposition with dual- and multi-energy computed tomography vol.10, pp.4, 2017, https://doi.org/10.1557/mrc.2020.86
- Deriving the Effective Atomic Number with a Dual-Energy Image Set Acquired by the Big Bore CT Simulator vol.45, pp.4, 2017, https://doi.org/10.14407/jrpr.2020.45.4.171
- Dual-Energy CT for Pulmonary Embolism: Current and Evolving Clinical Applications vol.22, pp.9, 2021, https://doi.org/10.3348/kjr.2020.1512
- Dual energy imaging in cardiothoracic pathologies: A primer for radiologists and clinicians vol.8, pp.None, 2017, https://doi.org/10.1016/j.ejro.2021.100324
- An Optimized K-Edge Signal Extraction Method for K-Edge Decomposition Imaging Using a Photon Counting Detector vol.8, pp.None, 2017, https://doi.org/10.3389/fphy.2020.601623
- Generation of Brain Dual-Energy CT from Single-Energy CT Using Deep Learning vol.34, pp.1, 2017, https://doi.org/10.1007/s10278-020-00414-1
- Feasibility of Coronary Artery Calcium Scoring on Dual-Energy Chest Computed Tomography: A Prospective Comparison with Electrocardiogram-Gated Calcium Score Computed Tomography vol.10, pp.4, 2021, https://doi.org/10.3390/jcm10040653
- Comparison of noise-optimized linearly blended images and noise-optimized virtual monoenergetic images evaluated by dual-source, dual-energy CT in cardiac vein assessment vol.62, pp.5, 2017, https://doi.org/10.1177/0284185120933242
- Development of a dose-rate dosimeter for x-ray CT scanner using silicon x-ray diode vol.92, pp.5, 2017, https://doi.org/10.1063/5.0047546
- Harnessing X‐Ray Energy‐Dependent Attenuation of Bismuth‐Based Nanoprobes for Accurate Diagnosis of Liver Fibrosis vol.8, pp.11, 2017, https://doi.org/10.1002/advs.202002548
- 3D Compton scattering imaging with multiple scattering: analysis by FIO and contour reconstruction vol.37, pp.6, 2021, https://doi.org/10.1088/1361-6420/abf22b
- Modeling and Reconstruction Strategy for Compton Scattering Tomography with Scintillation Crystals vol.11, pp.6, 2021, https://doi.org/10.3390/cryst11060641
- Performance of four dual-energy CT platforms for abdominal imaging: a task-based image quality assessment based on phantom data vol.31, pp.7, 2021, https://doi.org/10.1007/s00330-020-07671-2
- Texture analysis based on U-Net neural network for intracranial hemorrhage identification predicts early enlargement vol.206, pp.None, 2017, https://doi.org/10.1016/j.cmpb.2021.106140
- In Vivo Imaging of Biodegradable Implants and Related Tissue Biomarkers vol.13, pp.14, 2021, https://doi.org/10.3390/polym13142348
- Reconstruction algorithm for 3D Compton scattering imaging with incomplete data vol.29, pp.7, 2017, https://doi.org/10.1080/17415977.2020.1815723
- Feasibility study of using virtual non-contrast images derived from dual-energy CT to replace true non-contrast images in patients diagnosed with papillary thyroid carcinoma vol.29, pp.4, 2017, https://doi.org/10.3233/xst-210884
- Evaluation of dual‐energy and perfusion CT parameters for diagnosing solitary pulmonary nodules vol.12, pp.20, 2017, https://doi.org/10.1111/1759-7714.14105
- High Channel Temperature Mapping Electronics in a Thin, Soft, Wireless Format for Non-Invasive Body Thermal Analysis vol.11, pp.11, 2021, https://doi.org/10.3390/bios11110435
- Dual-Energy Heart CT: Beyond Better Angiography-Review vol.10, pp.21, 2021, https://doi.org/10.3390/jcm10215193
- A novel parameter derived from post-processing procedure of dual energy CT for identification of gout vol.11, pp.1, 2017, https://doi.org/10.1038/s41598-021-01100-0
- Gene expression changes and DNA damage after ex vivo exposure of peripheral blood cells to various CT photon spectra vol.11, pp.1, 2017, https://doi.org/10.1038/s41598-021-91023-7
- Computer vision applied to dual-energy computed tomography images for precise calcinosis cutis quantification in patients with systemic sclerosis vol.23, pp.1, 2017, https://doi.org/10.1186/s13075-020-02392-9
- Dual-energy computed tomography: Survey results on current uses and barriers to further implementation vol.94, pp.1128, 2017, https://doi.org/10.1259/bjr.20210565
- Preoperative assessment of cervical lymph node metastases in patients with papillary thyroid carcinoma: Incremental diagnostic value of dual-energy CT combined with ultrasound vol.16, pp.12, 2021, https://doi.org/10.1371/journal.pone.0261233
- Detecting lymph node metastasis of esophageal cancer on dual-energy computed tomography vol.63, pp.1, 2022, https://doi.org/10.1177/0284185120980144