DOI QR코드

DOI QR Code

Dual-Energy CT: New Horizon in Medical Imaging

  • Goo, Hyun Woo (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Goo, Jin Mo (Department of Radiology, Seoul National University College of Medicine)
  • Received : 2017.01.28
  • Accepted : 2017.02.23
  • Published : 2017.08.01

Abstract

Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

Keywords

References

  1. Goo HW. CT radiation dose optimization and estimation: an update for radiologists. Korean J Radiol 2012;13:1-11 https://doi.org/10.3348/kjr.2012.13.1.1
  2. Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol 2007;17:1510-1517 https://doi.org/10.1007/s00330-006-0517-6
  3. Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 1973;46:1016-1022 https://doi.org/10.1259/0007-1285-46-552-1016
  4. Johnson TR. Dual-energy CT: general principles. AJR Am J Roentgenol 2012;199(5 Suppl):S3-S8 https://doi.org/10.2214/AJR.12.9116
  5. McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and multienergy CT: principles, technical approaches, and clinical applications. Radiology 2015;276:637-653 https://doi.org/10.1148/radiol.2015142631
  6. Maturen KE, Kaza RK, Liu PS, Quint LE, Khalatbari SH, Platt JF. "Sweet spot" for endoleak detection: optimizing contrast to noise using low keV reconstructions from fast-switch kVp dual-energy CT. J Comput Assist Tomogr 2012;36:83-87 https://doi.org/10.1097/RCT.0b013e31824258cb
  7. Faby S, Kuchenbecker S, Sawall S, Simons D, Schlemmer HP, Lell M, et al. Performance of today's dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: a simulation study. Med Phys 2015;42:4349-4366 https://doi.org/10.1118/1.4922654
  8. Mileto A, Barina A, Marin D, Stinnett SS, Roy Choudhury K, Wilson JM, et al. Virtual monochromatic images from dual-energy multidetector CT: variance in CT numbers from the same lesion between single-source projection-based and dual-source image-based implementations. Radiology 2016;279:269-277 https://doi.org/10.1148/radiol.2015150919
  9. Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol 2012;199(5 Suppl):S9-S15 https://doi.org/10.2214/AJR.12.9121
  10. Leng S, Yu L, Fletcher JG, McCollough CH. Maximizing iodine contrast-to-noise ratios in abdominal CT imaging through use of energy domain noise reduction and virtual monoenergetic dual-energy CT. Radiology 2015;276:562-570 https://doi.org/10.1148/radiol.2015140857
  11. Albrecht MH, Trommer J, Wichmann JL, Scholtz JE, Martin SS, Lehnert T, et al. Comprehensive comparison of virtual monoenergetic and linearly blended reconstruction techniques in third-generation dual-source dual-energy computed tomography angiography of the thorax and abdomen. Invest Radiol 2016;51:582-590 https://doi.org/10.1097/RLI.0000000000000272
  12. Wichmann JL, Gillott MR, De Cecco CN, Mangold S, Varga-Szemes A, Yamada R, et al. Dual-energy computed tomography angiography of the lower extremity runoff: impact of noiseoptimized virtual monochromatic imaging on image quality and diagnostic accuracy. Invest Radiol 2016;51:139-146 https://doi.org/10.1097/RLI.0000000000000216
  13. Pomerantz SR, Kamalian S, Zhang D, Gupta R, Rapalino O, Sahani DV, et al. Virtual monochromatic reconstruction of dual-energy unenhanced head CT at 65-75 keV maximizes image quality compared with conventional polychromatic CT. Radiology 2013;266:318-325 https://doi.org/10.1148/radiol.12111604
  14. Agrawal MD, Pinho DF, Kulkarni NM, Hahn PF, Guimaraes AR, Sahani DV. Oncologic applications of dual-energy CT in the abdomen. Radiographics 2014;34:589-612 https://doi.org/10.1148/rg.343135041
  15. Bongers MN, Schabel C, Thomas C, Raupach R, Notohamiprodjo M, Nikolaou K, et al. Comparison and combination of dualenergy-and iterative-based metal artefact reduction on hip prosthesis and dental implants. PLoS One 2015;10:e0143584 https://doi.org/10.1371/journal.pone.0143584
  16. Garcia LI, Azorin JF, Almansa JF. A new method to measure electron density and effective atomic number using dualenergy CT images. Phys Med Biol 2016;61:265-279 https://doi.org/10.1088/0031-9155/61/1/265
  17. Chen CY, Hsu JS, Jaw TS, Shih MC, Lee LJ, Tsai TH, et al. Split-bolus portal venous phase dual-energy CT urography: protocol design, image quality, and dose reduction. AJR Am J Roentgenol 2015;205:W492-W501 https://doi.org/10.2214/AJR.14.13687
  18. De Cecco CN, Darnell A, Rengo M, Muscogiuri G, Bellini D, Ayuso C, et al. Dual-energy CT: oncologic applications. AJR Am J Roentgenol 2012;199(5 Suppl):S98-S105 https://doi.org/10.2214/AJR.12.9207
  19. Chae EJ, Song JW, Seo JB, Krauss B, Jang YM, Song KS. Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 2008;249:671-681 https://doi.org/10.1148/radiol.2492071956
  20. Lee HA, Lee YH, Yoon KH, Bang DH, Park DE. Comparison of virtual unenhanced images derived from dual-energy CT with true unenhanced images in evaluation of gallstone disease. AJR Am J Roentgenol 2016;206:74-80 https://doi.org/10.2214/AJR.15.14570
  21. Krauss B, Grant KL, Schmidt BT, Flohr TG. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency. Invest Radiol 2015;50:114-118 https://doi.org/10.1097/RLI.0000000000000109
  22. Luo XF, Xie XQ, Cheng S, Yang Y, Yan J, Zhang H, et al. Dualenergy CT for patients suspected of having liver iron overload: can virtual iron content imaging accurately quantify liver iron content? Radiology 2015;277:95-103 https://doi.org/10.1148/radiol.2015141856
  23. Omoumi P, Verdun FR, Guggenberger R, Andreisek G, Becce F. Dual-energy CT: basic principles, technical approaches, and applications in musculoskeletal imaging (part 2). Semin Musculoskelet Radiol 2015;19:438-445 https://doi.org/10.1055/s-0035-1569252
  24. Pache G, Krauss B, Strohm P, Saueressig U, Blanke P, Bulla S, et al. Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions--feasibility study. Radiology 2010;256:617-624 https://doi.org/10.1148/radiol.10091230
  25. McLaughlin PD, Mallinson P, Lourenco P, Nicolaou S. Dualenergy computed tomography: advantages in the acute setting. Radiol Clin North Am 2015;53:619-638, vii https://doi.org/10.1016/j.rcl.2015.02.016
  26. Thieme SF, Johnson TR, Lee C, McWilliams J, Becker CR, Reiser MF, et al. Dual-energy CT for the assessment of contrast material distribution in the pulmonary parenchyma. AJR Am J Roentgenol 2009;193:144-149 https://doi.org/10.2214/AJR.08.1653
  27. Goo HW. Initial experience of dual-energy lung perfusion CT using a dual-source CT system in children. Pediatr Radiol 2010;40:1536-1544 https://doi.org/10.1007/s00247-010-1759-7
  28. Otrakji A, Digumarthy SR, Lo Gullo R, Flores EJ, Shepard JA, Kalra MK. Dual-energy CT: spectrum of thoracic abnormalities. Radiographics 2016;36:38-52 https://doi.org/10.1148/rg.2016150081
  29. Hong YJ, Kim JY, Choe KO, Hur J, Lee HJ, Choi BW, et al. Different perfusion pattern between acute and chronic pulmonary thromboembolism: evaluation with two-phase dualenergy perfusion CT. AJR Am J Roentgenol 2013;200:812-817 https://doi.org/10.2214/AJR.12.8697
  30. Iyer KS, Newell JD Jr, Jin D, Fuld MK, Saha PK, Hansdottir S, et al. Quantitative dual-energy computed tomography supports a vascular etiology of smoking-induced inflammatory lung disease. Am J Respir Crit Care Med 2016;193:652-661 https://doi.org/10.1164/rccm.201506-1196OC
  31. Baxa J, Matouskova T, Krakorova G, Schmidt B, Flohr T, Sedlmair M, et al. Dual-phase dual-energy CT in patients treated with erlotinib for advanced non-small cell lung cancer: possible benefits of iodine quantification in response assessment. Eur Radiol 2016;26:2828-2836 https://doi.org/10.1007/s00330-015-4092-6
  32. Kim SJ, Lim HK, Lee HY, Choi CG, Lee DH, Suh DC, et al. Dualenergy CT in the evaluation of intracerebral hemorrhage of unknown origin: differentiation between tumor bleeding and pure hemorrhage. AJNR Am J Neuroradiol 2012;33:865-872 https://doi.org/10.3174/ajnr.A2890
  33. Tijssen MP, Hofman PA, Stadler AA, van Zwam W, de Graaf R, van Oostenbrugge RJ, et al. The role of dual energy CT in differentiating between brain haemorrhage and contrast medium after mechanical revascularisation in acute ischaemic stroke. Eur Radiol 2014;24:834-840 https://doi.org/10.1007/s00330-013-3073-x
  34. Jin KN, De Cecco CN, Caruso D, Tesche C, Spandorfer A, Varga-Szemes A, et al. Myocardial perfusion imaging with dual energy CT. Eur J Radiol 2016;85:1914-1921 https://doi.org/10.1016/j.ejrad.2016.06.023
  35. Hur J, Kim YJ, Lee HJ, Nam JE, Hong YJ, Kim HY, et al. Cardioembolic stroke: dual-energy cardiac CT for differentiation of left atrial appendage thrombus and circulatory stasis. Radiology 2012;263:688-695 https://doi.org/10.1148/radiol.12111691
  36. Ascenti G, Mazziotti S, Lamberto S, Bottari A, Caloggero S, Racchiusa S, et al. Dual-energy CT for detection of endoleaks after endovascular abdominal aneurysm repair: usefulness of colored iodine overlay. AJR Am J Roentgenol 2011;196:1408-1414 https://doi.org/10.2214/AJR.10.4505
  37. Goo HW, Chae EJ, Seo JB, Hong SJ. Xenon ventilation CT using a dual-source dual-energy technique: dynamic ventilation abnormality in a child with bronchial atresia. Pediatr Radiol 2008;38:1113-1116 https://doi.org/10.1007/s00247-008-0914-x
  38. Chae EJ, Seo JB, Goo HW, Kim N, Song KS, Lee SD, et al. Xenon ventilation CT with a dual-energy technique of dualsource CT: initial experience. Radiology 2008;248:615-624 https://doi.org/10.1148/radiol.2482071482
  39. Park EA, Goo JM, Park SJ, Lee HJ, Lee CH, Park CM, et al. Chronic obstructive pulmonary disease: quantitative and visual ventilation pattern analysis at xenon ventilation CT performed by using a dual-energy technique. Radiology 2010;256:985-997 https://doi.org/10.1148/radiol.10091502
  40. Chae EJ, Seo JB, Lee J, Kim N, Goo HW, Lee HJ, et al. Xenon ventilation imaging using dual-energy computed tomography in asthmatics: initial experience. Invest Radiol 2010;45:354-361
  41. Goo HW, Yu J. Redistributed regional ventilation after the administration of a bronchodilator demonstrated on xenoninhaled dual-energy CT in a patient with asthma. Korean J Radiol 2011;12:386-389 https://doi.org/10.3348/kjr.2011.12.3.386
  42. Kim WW, Lee CH, Goo JM, Park SJ, Kim JH, Park EA, et al. Xenon-enhanced dual-energy CT of patients with asthma: dynamic ventilation changes after methacholine and salbutamol inhalation. AJR Am J Roentgenol 2012;199:975-981 https://doi.org/10.2214/AJR.11.7624
  43. Goo HW, Yang DH, Hong SJ, Yu J, Kim BJ, Seo JB, et al. Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results. Pediatr Radiol 2010;40:1490-1497 https://doi.org/10.1007/s00247-010-1645-3
  44. Goo HW, Yang DH, Kim N, Park SI, Kim DK, Kim EA. Collateral ventilation to congenital hyperlucent lung lesions assessed on xenon-enhanced dynamic dual-energy CT: an initial experience. Korean J Radiol 2011;12:25-33 https://doi.org/10.3348/kjr.2011.12.1.25
  45. Honda N, Osada H, Watanabe W, Nakayama M, Nishimura K, Krauss B, et al. Imaging of ventilation with dual-energy CT during breath hold after single vital-capacity inspiration of stable xenon. Radiology 2012;262:262-268 https://doi.org/10.1148/radiol.11110569
  46. Goo HW. Dual-energy lung perfusion and ventilation CT in children. Pediatr Radiol 2013;43:298-307 https://doi.org/10.1007/s00247-012-2465-4
  47. Yoon SH, Goo JM, Jung J, Hong H, Park EA, Lee CH, et al. Computer-aided classification of visual ventilation patterns in patients with chronic obstructive pulmonary disease at twophase xenon-enhanced CT. Korean J Radiol 2014;15:386-396 https://doi.org/10.3348/kjr.2014.15.3.386
  48. Hachulla AL, Pontana F, Wemeau-Stervinou L, Khung S, Faivre JB, Wallaert B, et al. Krypton ventilation imaging using dualenergy CT in chronic obstructive pulmonary disease patients: initial experience. Radiology 2012;263:253-259 https://doi.org/10.1148/radiol.12111211
  49. Hong SR, Chang S, Im DJ, Suh YJ, Hong YJ, Hur J, et al. Feasibility of single scan for simultaneous evaluation of regional krypton and iodine concentrations with dual-energy CT: an experimental study. Radiology 2016;281:597-605 https://doi.org/10.1148/radiol.16152429
  50. Qu M, Ramirez-Giraldo JC, Leng S, Williams JC, Vrtiska TJ, Lieske JC, et al. Dual-energy dual-source CT with additional spectral filtration can improve the differentiation of nonuric acid renal stones: an ex vivo phantom study. AJR Am J Roentgenol 2011;196:1279-1287 https://doi.org/10.2214/AJR.10.5041
  51. Li X, Zhao R, Liu B, Yu Y. Gemstone spectral imaging dualenergy computed tomography: a novel technique to determine urinary stone composition. Urology 2013;81:727-730 https://doi.org/10.1016/j.urology.2013.01.010
  52. Coupal TM, Mallinson PI, Gershony SL, McLaughlin PD, Munk PL, Nicolaou S, et al. Getting the most from your dual-energy scanner: recognizing, reducing, and eliminating artifacts. AJR Am J Roentgenol 2016;206:119-128 https://doi.org/10.2214/AJR.14.13901
  53. Schulz B, Kuehling K, Kromen W, Siebenhandl P, Kerl MJ, Vogl TJ, et al. Automatic bone removal technique in whole-body dual-energy CT angiography: performance and image quality. AJR Am J Roentgenol 2012;199:W646-W650 https://doi.org/10.2214/AJR.12.9176
  54. Lee CW, Seo JB, Song JW, Kim MY, Lee HY, Park YS, et al. Evaluation of computer-aided detection and dual energy software in detection of peripheral pulmonary embolism on dual-energy pulmonary CT angiography. Eur Radiol 2011;21:54-62 https://doi.org/10.1007/s00330-010-1903-7
  55. Atak H, Shikhaliev PM. Dual energy CT with photon counting and dual source systems: comparative evaluation. Phys Med Biol 2015;60:8949-8975 https://doi.org/10.1088/0031-9155/60/23/8949
  56. Pourmorteza A, Symons R, Sandfort V, Mallek M, Fuld MK, Henderson G, et al. Abdominal imaging with contrastenhanced photon-counting CT: first human experience. Radiology 2016;279:239-245 https://doi.org/10.1148/radiol.2016152601
  57. Yu Z, Leng S, Jorgensen SM, Li Z, Gutjahr R, Chen B, et al. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array. Phys Med Biol 2016;61:1572-1595 https://doi.org/10.1088/0031-9155/61/4/1572

Cited by

  1. Can quantitative iodine parameters on DECT replace perfusion CT parameters in colorectal cancers? vol.28, pp.11, 2017, https://doi.org/10.1007/s00330-018-5502-3
  2. Measurement of Vascular Diameter in Computed Tomography Angiography With Reduced Iodine Load: Comparison of Virtual Monochromatic Imaging in Dual-Energy Computed Tomography and Conventional Polychrom vol.42, pp.6, 2017, https://doi.org/10.1097/rct.0000000000000769
  3. Accuracy of Quantification of Iodine and Hounsfield Unit Values on Virtual Monochromatic Imaging Using Dual-Energy Computed Tomography: Comparison of Dual-Layer Computed Tomography With Fast Kilovolt vol.42, pp.6, 2017, https://doi.org/10.1097/rct.0000000000000798
  4. Image Decomposition Algorithm for Dual-Energy Computed Tomography via Fully Convolutional Network vol.2018, pp.None, 2017, https://doi.org/10.1155/2018/2527516
  5. Two Small Intravenous Catheters for High-Rate Contrast Medium Injection for Computed Tomography in Patients Lacking Superficial Veins to Accommodate a Large Catheter vol.19, pp.3, 2017, https://doi.org/10.3348/kjr.2018.19.3.489
  6. Optimal Monochromatic Imaging of Spectral Computed Tomography Potentially Improves the Quality of Hepatic Vascular Imaging vol.19, pp.4, 2017, https://doi.org/10.3348/kjr.2018.19.4.578
  7. Comparison of Filtered Back Projection, Hybrid Iterative Reconstruction, Model-Based Iterative Reconstruction, and Virtual Monoenergetic Reconstruction Images at Both Low- and Standard-Dose Settings i vol.19, pp.4, 2017, https://doi.org/10.3348/kjr.2018.19.4.809
  8. Iodine Quantification on Spectral Detector-Based Dual-Energy CT Enterography: Correlation with Crohn's Disease Activity Index and External Validation vol.19, pp.6, 2017, https://doi.org/10.3348/kjr.2018.19.6.1077
  9. Comparison of Iodine Density Measurement Among Dual-Energy Computed Tomography Scanners From 3 Vendors vol.53, pp.6, 2017, https://doi.org/10.1097/rli.0000000000000446
  10. Machine learning-based dual-energy CT parametric mapping vol.63, pp.12, 2017, https://doi.org/10.1088/1361-6560/aac711
  11. A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology vol.20, pp.12, 2019, https://doi.org/10.3348/kjr.2019.0928
  12. Dual energy CT and research of the bone marrow edema: Comparison with MRI imaging vol.29, pp.4, 2017, https://doi.org/10.4103/ijri.ijri_243_19
  13. Linear analysis of single-shot dual-energy computed tomography with a multilayer detector vol.14, pp.1, 2017, https://doi.org/10.1088/1748-0221/14/01/c01022
  14. Detection of Lumbar Spine Osseous Metastases Using Dual-Energy CT: Phantom Results and Preliminary Clinical Validation vol.212, pp.2, 2017, https://doi.org/10.2214/ajr.18.19933
  15. Optimal Kiloelectron Volt for Noise-Optimized Virtual Monoenergetic Images of Dual-Energy Pediatric Abdominopelvic Computed Tomography: Preliminary Results vol.20, pp.2, 2019, https://doi.org/10.3348/kjr.2017.0507
  16. User-Friendly Vendor-Specific Guideline for Pediatric Cardiothoracic Computed Tomography Provided by the Asian Society of Cardiovascular Imaging Congenital Heart Disease Study Group: Part 1. Imaging T vol.20, pp.2, 2017, https://doi.org/10.3348/kjr.2018.0571
  17. A Bismuth Metal-Organic Framework as a Contrast Agent for X-ray Computed Tomography vol.2, pp.3, 2019, https://doi.org/10.1021/acsabm.8b00778
  18. Dual‐energy CT iodine quantification for characterizing focal thyroid lesions vol.41, pp.4, 2017, https://doi.org/10.1002/hed.25524
  19. Comparison of Lipid and Water Contents by Time-domain Diffuse Optical Spectroscopy and Dual-energy Computed Tomography in Breast Cancer Patients vol.9, pp.7, 2019, https://doi.org/10.3390/app9071482
  20. Dual-Energy CT in Children: Imaging Algorithms and Clinical Applications vol.291, pp.2, 2017, https://doi.org/10.1148/radiol.2019182289
  21. Exploring light confinement in laser-processed LYSO:Ce for photon counting CT application vol.64, pp.9, 2019, https://doi.org/10.1088/1361-6560/ab1213
  22. Identification of epidermal growth factor receptor mutations in pulmonary adenocarcinoma using dual-energy spectral computed tomography vol.29, pp.6, 2017, https://doi.org/10.1007/s00330-018-5756-9
  23. Prognostic Significance of CT-Attenuation of Tumor-Adjacent Breast Adipose Tissue in Breast Cancer Patients with Surgical Resection vol.11, pp.8, 2019, https://doi.org/10.3390/cancers11081135
  24. Third-generation dual-source dual-energy CT in pediatric congenital heart disease patients: state-of-the-art vol.124, pp.12, 2017, https://doi.org/10.1007/s11547-019-01097-7
  25. Evaluation of dual energy CT and iterative metal artefact reduction (iMAR) for artefact reduction in radiation therapy vol.42, pp.4, 2019, https://doi.org/10.1007/s13246-019-00801-1
  26. Value of virtual monochromatic spectral image of dual-layer spectral detector CT with noise reduction algorithm for image quality improvement in obese simulated body phantom vol.19, pp.1, 2017, https://doi.org/10.1186/s12880-019-0367-8
  27. Dual-energy spectral CT characteristics in surgically resected lung adenocarcinoma: comparison between Kirsten rat sarcoma viral oncogene mutations and epidermal growth factor receptor mutations vol.19, pp.1, 2017, https://doi.org/10.1186/s40644-019-0261-1
  28. Utilization of virtual low-keV monoenergetic images generated using dual-layer spectral detector computed tomography for the assessment of peritoneal seeding from ovarian cancer vol.99, pp.23, 2020, https://doi.org/10.1097/md.0000000000020444
  29. Prognostic Value of Dual-Energy CT-Based Iodine Quantification versus Conventional CT in Acute Pulmonary Embolism: A Propensity-Match Analysis vol.21, pp.9, 2020, https://doi.org/10.3348/kjr.2019.0645
  30. Application of Dual-Energy Spectral Computed Tomography to Thoracic Oncology Imaging vol.21, pp.7, 2017, https://doi.org/10.3348/kjr.2019.0711
  31. Characteristics of Recent Articles Published in the Korean Journal of Radiology Based on the Citation Frequency vol.21, pp.12, 2020, https://doi.org/10.3348/kjr.2020.1322
  32. Multi‐“Color” Delineation of Bone Microdamages Using Ligand‐Directed Sub‐5 nm Hafnia Nanodots and Photon Counting CT Imaging vol.30, pp.4, 2017, https://doi.org/10.1002/adfm.201904936
  33. An overview of non-invasive imaging modalities for diagnosis of solid and cystic renal lesions vol.58, pp.1, 2017, https://doi.org/10.1007/s11517-019-02049-z
  34. Image Quality and Dose Comparison of Single-Energy CT (SECT) and Dual-Energy CT (DECT) vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/1403957
  35. Advances in Diagnosis and Treatment of Pancreatic Cancer vol.9, pp.2, 2017, https://doi.org/10.12677/hjs.2020.92002
  36. Neuroimaging of Intracerebral Hemorrhage vol.86, pp.5, 2017, https://doi.org/10.1093/neuros/nyaa029
  37. Dual energy CT: a step ahead in brain and spine imaging vol.93, pp.1109, 2020, https://doi.org/10.1259/bjr.20190872
  38. Diagnostic performance of multidetector computed tomographic (MDCTU) in upper tract urothelial carcinoma (UTUC): a systematic review and meta-analysis vol.38, pp.5, 2017, https://doi.org/10.1007/s00345-019-02875-8
  39. Diagnostic accuracy of dual-energy CT for detection of bone marrow lesions in the subacutely injured knee with MRI as reference method vol.61, pp.6, 2020, https://doi.org/10.1177/0284185119877343
  40. Radiological imaging in multiple myeloma: review of the state-of-the-art vol.62, pp.8, 2017, https://doi.org/10.1007/s00234-020-02417-9
  41. Quantitative imaging performance of MARS spectral photon‐counting CT for radiotherapy vol.47, pp.8, 2017, https://doi.org/10.1002/mp.14204
  42. Experimental research of the energy bins for K-edge imaging using a photon counting detector: a phantom and mice study vol.4, pp.3, 2020, https://doi.org/10.1007/s41605-020-00184-y
  43. Impact of iterative reconstructions on image quality and detectability of focal liver lesions in low-energy monochromatic images vol.77, pp.None, 2017, https://doi.org/10.1016/j.ejmp.2020.07.024
  44. Update on Multienergy CT: Physics, Principles, and Applications vol.40, pp.5, 2017, https://doi.org/10.1148/rg.2020200038
  45. Improvement with the Multi-material Decomposition Framework in Dual-energy Computed Tomography: A Phantom Study vol.77, pp.6, 2017, https://doi.org/10.3938/jkps.77.515
  46. Radiomics analysis of dual-energy CT-derived iodine maps for diagnosing metastatic cervical lymph nodes in patients with papillary thyroid cancer vol.30, pp.11, 2020, https://doi.org/10.1007/s00330-020-06866-x
  47. Reduction in Irradiation Dose in Aperture Coded Enhanced Computed Tomography Imager Using Super-Resolution Techniques vol.20, pp.22, 2017, https://doi.org/10.3390/s20226551
  48. Dual-energy CT perfusion imaging for differentiating WHO subtypes of thymic epithelial tumors vol.10, pp.None, 2017, https://doi.org/10.1038/s41598-020-62466-1
  49. Improved detectability of hypoattenuating focal pancreatic lesions by dual-layer computed tomography using virtual monoenergetic images vol.51, pp.1, 2020, https://doi.org/10.1186/s43055-020-00270-7
  50. Visibility of bronchial arteries using virtual and advanced virtual monoenergetic imaging vol.61, pp.12, 2017, https://doi.org/10.1177/0284185120923992
  51. Material decomposition with dual- and multi-energy computed tomography vol.10, pp.4, 2017, https://doi.org/10.1557/mrc.2020.86
  52. Deriving the Effective Atomic Number with a Dual-Energy Image Set Acquired by the Big Bore CT Simulator vol.45, pp.4, 2017, https://doi.org/10.14407/jrpr.2020.45.4.171
  53. Dual-Energy CT for Pulmonary Embolism: Current and Evolving Clinical Applications vol.22, pp.9, 2021, https://doi.org/10.3348/kjr.2020.1512
  54. Dual energy imaging in cardiothoracic pathologies: A primer for radiologists and clinicians vol.8, pp.None, 2017, https://doi.org/10.1016/j.ejro.2021.100324
  55. An Optimized K-Edge Signal Extraction Method for K-Edge Decomposition Imaging Using a Photon Counting Detector vol.8, pp.None, 2017, https://doi.org/10.3389/fphy.2020.601623
  56. Generation of Brain Dual-Energy CT from Single-Energy CT Using Deep Learning vol.34, pp.1, 2017, https://doi.org/10.1007/s10278-020-00414-1
  57. Feasibility of Coronary Artery Calcium Scoring on Dual-Energy Chest Computed Tomography: A Prospective Comparison with Electrocardiogram-Gated Calcium Score Computed Tomography vol.10, pp.4, 2021, https://doi.org/10.3390/jcm10040653
  58. Comparison of noise-optimized linearly blended images and noise-optimized virtual monoenergetic images evaluated by dual-source, dual-energy CT in cardiac vein assessment vol.62, pp.5, 2017, https://doi.org/10.1177/0284185120933242
  59. Development of a dose-rate dosimeter for x-ray CT scanner using silicon x-ray diode vol.92, pp.5, 2017, https://doi.org/10.1063/5.0047546
  60. Harnessing X‐Ray Energy‐Dependent Attenuation of Bismuth‐Based Nanoprobes for Accurate Diagnosis of Liver Fibrosis vol.8, pp.11, 2017, https://doi.org/10.1002/advs.202002548
  61. 3D Compton scattering imaging with multiple scattering: analysis by FIO and contour reconstruction vol.37, pp.6, 2021, https://doi.org/10.1088/1361-6420/abf22b
  62. Modeling and Reconstruction Strategy for Compton Scattering Tomography with Scintillation Crystals vol.11, pp.6, 2021, https://doi.org/10.3390/cryst11060641
  63. Performance of four dual-energy CT platforms for abdominal imaging: a task-based image quality assessment based on phantom data vol.31, pp.7, 2021, https://doi.org/10.1007/s00330-020-07671-2
  64. Texture analysis based on U-Net neural network for intracranial hemorrhage identification predicts early enlargement vol.206, pp.None, 2017, https://doi.org/10.1016/j.cmpb.2021.106140
  65. In Vivo Imaging of Biodegradable Implants and Related Tissue Biomarkers vol.13, pp.14, 2021, https://doi.org/10.3390/polym13142348
  66. Reconstruction algorithm for 3D Compton scattering imaging with incomplete data vol.29, pp.7, 2017, https://doi.org/10.1080/17415977.2020.1815723
  67. Feasibility study of using virtual non-contrast images derived from dual-energy CT to replace true non-contrast images in patients diagnosed with papillary thyroid carcinoma vol.29, pp.4, 2017, https://doi.org/10.3233/xst-210884
  68. Evaluation of dual‐energy and perfusion CT parameters for diagnosing solitary pulmonary nodules vol.12, pp.20, 2017, https://doi.org/10.1111/1759-7714.14105
  69. High Channel Temperature Mapping Electronics in a Thin, Soft, Wireless Format for Non-Invasive Body Thermal Analysis vol.11, pp.11, 2021, https://doi.org/10.3390/bios11110435
  70. Dual-Energy Heart CT: Beyond Better Angiography-Review vol.10, pp.21, 2021, https://doi.org/10.3390/jcm10215193
  71. A novel parameter derived from post-processing procedure of dual energy CT for identification of gout vol.11, pp.1, 2017, https://doi.org/10.1038/s41598-021-01100-0
  72. Gene expression changes and DNA damage after ex vivo exposure of peripheral blood cells to various CT photon spectra vol.11, pp.1, 2017, https://doi.org/10.1038/s41598-021-91023-7
  73. Computer vision applied to dual-energy computed tomography images for precise calcinosis cutis quantification in patients with systemic sclerosis vol.23, pp.1, 2017, https://doi.org/10.1186/s13075-020-02392-9
  74. Dual-energy computed tomography: Survey results on current uses and barriers to further implementation vol.94, pp.1128, 2017, https://doi.org/10.1259/bjr.20210565
  75. Preoperative assessment of cervical lymph node metastases in patients with papillary thyroid carcinoma: Incremental diagnostic value of dual-energy CT combined with ultrasound vol.16, pp.12, 2021, https://doi.org/10.1371/journal.pone.0261233
  76. Detecting lymph node metastasis of esophageal cancer on dual-energy computed tomography vol.63, pp.1, 2022, https://doi.org/10.1177/0284185120980144