DOI QR코드

DOI QR Code

A Low Noise Low Power Capacitive Instrument Amplifier for Bio-Potential Detection

생체 신호 측정용 저 잡음 저 전력 용량성 계측 증폭기

  • Park, Chang-Bum (Dept. of Electronics Engineering, Seokyeong University) ;
  • Jung, Jun-Mo (Dept. of Electronics Engineering, Seokyeong University) ;
  • Lim, Shin-Il (Dept. of Electronics Engineering, Seokyeong University)
  • Received : 2017.09.14
  • Accepted : 2017.09.20
  • Published : 2017.09.30

Abstract

We present a precision instrument amplifier (IA) designed for bio-potential acquisition. The proposed IA employs a capacitively coupled instrument amplifier (CCIA) structure to achieve a rail-to-rail input common-mode range and low gain error. A positive feedback loop is applied to boost the input impedance. Also, DC servo loop (DSL) with pseudo resistors is adopted to suppress electrode offset for bio-potential sensing. The proposed amplifier was designed in a $0.18{\mu}m$ CMOS technology with 1.8V supply voltage. Simulation results show the integrated noise of $1.276{\mu}Vrms$ in a frequency range from 0.01 Hz to 1 KHz, 65dB SNR, 118dB CMRR, and $58M{\Omega}$ input impedance respectively. The total current of IA is $38{\mu}A$. It occupies $740{\mu}m$ by $1300{\mu}m$ including the passive on-chip low pass filter.

Keywords

References

  1. R. R. Harrison, P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black, B. Greger, and F. Solzbacher, "A low-power integrated circuit for a wireless 100-electrode neural recording system," IEEE J. Solid-State Circuits, Vol. 42, No. 1, pp. 123-133, Jan. 2007 https://doi.org/10.1109/JSSC.2006.886567
  2. S. B. Lee, H.-M. Lee, M. Kiani, U.-M. Jow, and M. Ghovanloo, "An inductively powered scalable 32-channel wireless neural recording system on-a-chip for neuroscience applications," IEEE Trans. Biomed. Circuits Syst., Vol. 4, No. 6, pp. 360-371, Dec. 2010. https://doi.org/10.1109/TBCAS.2010.2078814
  3. R. F. Yazicioglu etal., "200 uW eight-channel EEG acquistion ASIC for ambulatory EEG systems," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2008, pp. 164-165.
  4. J. Yoo, et. al. "An 8-Channel Scalable EEG Acquisition SoC With Patient-Specific Seizure Classification and Recording Processor," IEEE J. Solid-State Circuits, Vol. 48, No. 1, pp. 214-228, Jan. 2013. https://doi.org/10.1109/JSSC.2012.2221220
  5. Q. Fan, F. Sebastiano, J. H. Huijsing, and K. A. A. Makinwa, "A 1.8 W 60 nV/${\surd}Hz$ capacitively-coupled chopper instrumentation amplifier in 65nm CMOS for wireless sensor nodes,"IEEE J. Solid-State Circuits, Vol. 46, No. 7, pp. 1534-1543, Jul. 2011. https://doi.org/10.1109/JSSC.2011.2143610
  6. R. P. Areny and J. G. Webster, "AC instrumentation amplifier for bio impedance measurements," IEEE Trans. Biomed. Eng., Vol. 40, No. 8, pp. 830-833, Aug. 1993. https://doi.org/10.1109/10.238470
  7. Cho, J. m., "Design of Variable Gain Amplifier without Passive Devices," J. Korea Information Systems Research, Vol. 18, No. 5, Oct, 2013
  8. J. H. Huijsing, Operational Amplifiers: Theory and Design. Boston, MA: Kluwer Academic, 2001.
  9. R. Yazicioglu, S. Kim, T. Torfs, H. Kim, and C. Van Hoof, "A 30 uW analog signal processor ASIC for portable biopotential signal monitoring," IEEE J. Solid-State Circuits, Vol. 46, No. 1, pp. 209-223, Jan. 2011. https://doi.org/10.1109/JSSC.2010.2085930
  10. R. R. Harrison and C. Charles, "A low-power low-noise CMOS amplifier for neural recording applications," IEEE J. Solid-State Circuits, Vol. 38, No. 6, pp. 958-965, Jun. 2003. https://doi.org/10.1109/JSSC.2003.811979
  11. J. Xu, R. Yazicioglu, B. Grundlehner, P. Harpe, K. A. A. Makinwa, and C. Van Hoof, "A 160 uW 8-channel active electrode system for EEG monitoring," IEEE Trans. Biomed. Circuits Syst., Vol. 5, No. 6, pp. 555-567, Dec. 2011. https://doi.org/10.1109/TBCAS.2011.2170985