References
- Stolaroff JK, Bhattacharyya S, Smith CA, Bourcier WL, Cameron-Smith PJ, Aines RD. 2012. Review of methane mitigation technologies with application to rapid release of methane from the Arctic. Environ. Sci. Technol. 46: 6455-6469. https://doi.org/10.1021/es204686w
- Cho KS, Ryu HW. 2009. Biotechnology for the mitigation of methane emission from landfills. Korean J. Microbiol. Biotechnol. 37: 293-305.
-
EPA. 2011. Draft: Global Anthropogenic Non-
$CO_2$ GHG Emissions: 1990-2030; U.S. Environmental Protection Agency: Washington, DC. - Boucher O, Folberth GA. 2010. New directions: atmospheric methane removal as a way to mitigate climate change? Atmos. Environ. 44: 3343-3345. https://doi.org/10.1016/j.atmosenv.2010.04.032
- Carothers FP, Schultz HL, Talkington CC. 2003. Mitigation of methane emissions from coal mine ventilation air: An update. US Environmental Protection Agency: Washington, DC.
- Kalyuzhnaya MG, Puri AW, Lidstrom ME. 2015. Metabolic engineering in methanotrophic bacteria. Metab. Eng. 29: 142-152. https://doi.org/10.1016/j.ymben.2015.03.010
- Chistoserdova L, Vorholt JA, Lidstrom ME. 2005. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol. 6: 208. https://doi.org/10.1186/gb-2005-6-2-208
- Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, et al. 2007. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450: 879. https://doi.org/10.1038/nature06411
- Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland N-K. 2008. Methane oxidation at 55 C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc. Natl. Acad. Sci. 105: 300-304. https://doi.org/10.1073/pnas.0704162105
- van Teeseling MC, Pol A, Harhangi HR, van der Zwart S, Jetten MS, den Camp HJO, et al. 2014. Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl. Environ. Microbiol. 80: 6782-6791. https://doi.org/10.1128/AEM.01838-14
- Stoecker K, Bendinger B, Schoning B, Nielsen PH, Nielsen JL, Baranyi C, et al. 2006. Cohn's Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc. Natl. Acad. Sci. USA 103: 2363-2367. https://doi.org/10.1073/pnas.0506361103
-
Vigliotta G, Nutricati E, Carata E, Tredici SM, De Stefano M, Pontieri P, et al. 2007. Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic
$\gamma$ -proteobacterium. Appl. Environ. Microbiol. 73: 3556-3565. https://doi.org/10.1128/AEM.02678-06 - Lee JH, Kim TG, Cho KS. 2012. Isolation and characterization of a facultative methanotroph degrading malodor-causing volatile sulfur compounds. J. Hazard. Mater. 235: 224-229.
- Zhang W, Ge X, Li YF, Yu Z, Li Y. 2016. Isolation of a methanotroph from a hydrogen sulfide-rich anaerobic digester for methanol production from biogas. Proc. Biochem. 51: 838-844. https://doi.org/10.1016/j.procbio.2016.04.003
- ReuB J, Rachel R, Kämpfer P, Rabenstein A, Küver J, Droge S, et al. 2015. Isolation of methanotrophic bacteria from termite gut. Microbiol. Res. 179: 29-37. https://doi.org/10.1016/j.micres.2015.06.003
- Bowman JP, McCammon SA, Skerrat JH. 1997. Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143: 1451-1459. https://doi.org/10.1099/00221287-143-4-1451
-
Bodrossy L, Kovács KL, McDonald IR, Murrell JC. 1999. A novel thermophilic methane-oxidising
$\gamma$ -Proteobacterium. FEMS Microbiol. Lett. 170: 335-341. - Kang TJ, Lee EY. 2016. Metabolic versatility of microbial methane oxidation for biocatalytic methane conversion. J. Ind. Eng. Chem. 35: 8-13. https://doi.org/10.1016/j.jiec.2016.01.017
- Costa KC, Leigh JA. 2014. Metabolic versatility in methanogens. Curr. Opin. Biotechnol. 29: 70-75. https://doi.org/10.1016/j.copbio.2014.02.012
- Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, et al. 2010. Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem. Eng. J. 49: 277-288. https://doi.org/10.1016/j.bej.2010.01.003
- Hanson RS, Hanson TE. 1996. Methanotrophic bacteria. Microbiol. Rev. 60: 439-471.
- Stanley S, Prior S, Leak D, Dalton H. 1983. Copper stress underlies the fundamental change in intracellular location of methane mono-oxygenase in methane-oxidizing organisms: studies in batch and continuous cultures. Biotechnol. Lett. 5: 487-492. https://doi.org/10.1007/BF00132233
- Smith DDS, Dalton H. 1989. Solubilisation of methane monooxygenase from Methylococcus capsulatus (Bath). The FEBS J. 182: 667-671.
- Elliott SJ, Zhu M, Tso L, Nguyen H-HT, Yip JH-K, Chan SI. 1997. Regio-and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 119: 9949-9955. https://doi.org/10.1021/ja971049g
- Lontoh S, Zahn JA, DiSpirito AA, Semrau JD. 2000. Identification of intermediates of in vivo trichloroethylene oxidation by the membrane-associated methane monooxygenase. FEMS Microbiol. Lett. 186: 109-113. https://doi.org/10.1111/j.1574-6968.2000.tb09090.x
- Colby J, Stirling DI, Dalton H. 1977. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem. J. 165: 395-402. https://doi.org/10.1042/bj1650395
- Green J, Dalton H. 1989. Substrate specificity of soluble methane monooxygenase. Mechanistic implications. J. Biol. Chem. 264: 17698-17703.
- Burrows KJ, Cornish A, Scott D, Higgins IJ. 1984. Substrate specificities of the soluble and particulate methane mono-oxygenases of Methylosinus trichosporium OB3b. Microbiology 130: 3327-3333. https://doi.org/10.1099/00221287-130-12-3327
- Fox BG, Borneman JG, Wackett LP, Lipscomb JD. 1990. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29: 6419-6427. https://doi.org/10.1021/bi00479a013
- Brusseau GA, Tsien H-C, Hanson RS, Wackett LP. 1990. Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation 1: 19-29. https://doi.org/10.1007/BF00117048
- Lindner AS, Adriaens P, Semrau JD. 2000. Transformation of ortho-substituted biphenyls by Methylosinus trichosporium OB3b: substituent effects on oxidation kinetics and product formation. Arch. Microbiol. 174: 35-41. https://doi.org/10.1007/s002030000170
- Dalton H. 1977. Ammonia oxidation by the methane oxidising bacterium Methylococcus capsulatus strain Bath. Arch. Microbiol. 114: 273-279. https://doi.org/10.1007/BF00446873
- Shah NN, Park S, Taylor RT, Droege MW. 1992. Cultivation of Methylosinus trichosporium OB3b: III. Production of particulate methane monooxygenase in continuous culture. Biotechnol. Bioeng. 40: 705-712. https://doi.org/10.1002/bit.260400609
- Shah NN, Hanna ML, Jackson KJ, Taylor RT. 1995. Batch cultivation of Methylosinus trichosporium OB3B: IV. Production of hydrogen‐driven soluble or particulate methane monooxygenase activity. Biotechnol. Bioeng. 45: 229-238. https://doi.org/10.1002/bit.260450307
- Lee J, Soni BK, Kelley RL. 1996. Cell growth and oxygen transfer in Methylosinus trichosporium OB3b cultures. Biotechnol. Lett. 18: 903-908. https://doi.org/10.1007/BF00154618
- Takeguchi M, Okura I. 2000. Role of iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b. Catal. Surv. Japan. 4: 51-63. https://doi.org/10.1023/A:1019036105038
- Han B, Su T, Wu H, Gou Z, Xing X-H, Jiang H, et al. 2009. Paraffin oil as a "methane vector" for rapid and high cell density cultivation of Methylosinus trichosporium OB3b. Appl. Microbiol. Biotechnol. 83: 669-677. https://doi.org/10.1007/s00253-009-1866-2
- Yu SSF, Chen KHC, Tseng MYH, Wang YS, Tseng CF, Chen YJ, et al. 2003. Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. J. Bacteriol. 185: 5915-5924. https://doi.org/10.1128/JB.185.20.5915-5924.2003
- Jiang H, Duan C, Jiang P, Liu M, Luo M, Xing X-H. 2016. Characteristics of scale-up fermentation of mixed methane-oxidizing bacteria. Biochem. Eng. J. 109: 112-117. https://doi.org/10.1016/j.bej.2015.12.001
- Adegbola O. 2008. High cell density methanol cultivation of Methylosinus trichosporium OB3b. Department of Chemical Engineering, Master of Science, Queen's University, Kingston
- Huber-Humer M, Gebert J, Hilger H. 2008. Biotic systems to mitigate landfill methane emissions. Waste Manage. Res. 26: 33-46. https://doi.org/10.1177/0734242X07087977
- Majdinasab A, Yuan Q. 2017. Performance of the biotic systems for reducing methane emissions from landfill sites: A review. Ecol. Eng. 104: 116-130. https://doi.org/10.1016/j.ecoleng.2017.04.015
- Scheutz C, Kjeldsen P, Bogner JE, De Visscher A, Gebert J, Hilger HA, et al. 2009. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manage. Res. 27: 409-455. https://doi.org/10.1177/0734242X09339325
- Bajar S, Singh A, Kaushik C, Kaushik A. 2016. Evaluation and statistical optimization of methane oxidation using rice husk amended dumpsite soil as biocover. Waste Manage. 53: 136-143. https://doi.org/10.1016/j.wasman.2015.09.023
- Wang J, Xia FF, Bai Y, Fang CR, Shen DS, He R. 2011. Methane oxidation in landfill waste biocover soil: kinetics and sensitivity to ambient conditions. Waste Manage. 31: 864-870. https://doi.org/10.1016/j.wasman.2011.01.026
- Siva Shangari G, Agamuthu P. 2012. Enhancing methane oxidation in landfill cover using brewery spent grain as biocover. Malaysian J. Sci. 31: 91-97. https://doi.org/10.22452/mjs.vol31no2.8
- Pedersen GB, Scheutz C, Kjeldsen P. 2011. Availability and properties of materials for the Fakse landfill biocover. Waste Manage. 31: 884-894. https://doi.org/10.1016/j.wasman.2010.11.020
- Lu WJ, Chi ZF, Mou ZS, Long YY, Wang HT, Zhu Y. 2011. Can a breathing biocover system enhance methane emission reduction from landfill? J. Hazard. Mater. 191: 228-233. https://doi.org/10.1016/j.jhazmat.2011.04.068
- Lee EH, Moon KE, Kim TG, Cho KS. 2014. Depth profiles of methane oxidation potentials and methanotrophic community in a lab-scale biocover. J. Biotechnol. 184: 56-62. https://doi.org/10.1016/j.jbiotec.2014.05.006
- Lee EH, Moon KE, Cho KS. 2017. Long-term performance and bacterial community dynamics in biocovers for mitigating methane and malodorous gases. J. Biotechnology 242: 1-10. https://doi.org/10.1016/j.jbiotec.2016.12.007
- Kim GW, Ho A, Kim PJ, Kim SY. 2016. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover. Waste Manage. 55: 306-312. https://doi.org/10.1016/j.wasman.2016.03.058
-
Bogner JE, Chanton JP, Blake D, Abichou T, Powelson D. 2010. Effectiveness of a Florida landfill biocover for reduction of
$CH_4$ and NMHC emissions. Environ. Sci. Technol. 44: 1197-1203. https://doi.org/10.1021/es901796k - Scheutz C, Pedersen RB, Petersen PH, Jorgensen JHB, Ucendo IMB, Monster JG, et al. 2014. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system. Waste Manage. 34: 1179-1190. https://doi.org/10.1016/j.wasman.2014.03.015
- Mei C, Yazdani R, Han B, Mostafid ME, Chanton J, Vander-Gheynst J, et al. 2015. Performance of green waste biocovers for enhancing methane oxidation. Waste Manage. 39: 205-215. https://doi.org/10.1016/j.wasman.2015.01.042
- Geck C, Scharff H, Pfeiffer E-M, Gebert J. 2016. Validation of a simple model to predict the performance of methane oxidation systems, using field data from a large scale biocover test field. Waste Manage. 56: 280-289. https://doi.org/10.1016/j.wasman.2016.06.006
- Cassini F, Scheutz C, Skov BH, Mou Z, Kjeldsen P. 2017. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljo Landfill, Denmark: 1. System design and gas distribution. Waste Manage. 63: 213-225. https://doi.org/10.1016/j.wasman.2017.01.013
- Scheutz C, Cassini F, De Schoenmaeker J, Kjeldsen P. 2017. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljo Landfill, Denmark: 2. Methane oxidation. Waste Manage. 63: 203-212. https://doi.org/10.1016/j.wasman.2017.01.012
- Bohn S, Brunke P, Gebert J, Jager J. 2011. Improving the aeration of critical fine-grained landfill top cover material by vegetation to increase the microbial methane oxidation efficiency. Waste Manage. 31: 854-863. https://doi.org/10.1016/j.wasman.2010.11.009
- Kim TG, Jeong SY, Cho KS. 2014. Characterization of tobermolite as a bed material for selective growth of methanotrophs in biofiltration. J. Biotechnol. 173: 90-97. https://doi.org/10.1016/j.jbiotec.2014.01.010
- Han D, Zhao Y, Xue B, Chai X. 2010. Effect of bio-column composed of aged refuse on methane abatement-A novel configuration of biological oxidation in refuse landfill. J. Environ. Sci. 22: 769-776. https://doi.org/10.1016/S1001-0742(09)60175-3
- Farrokhzadeh H, Hettiaratchi JPA, Jayasinghe P, Kumar S. 2017. Aerated biofilters with multiple-level air injection configurations to enhance biological treatment of methane emissions. Bioresour. Technol. 239: 219-225. https://doi.org/10.1016/j.biortech.2017.05.009
- Ganendra G, Mercado-Garcia D, Hernandez-Sanabria E, Peiren N, De Campeneere S, Ho A, et al. 2015. Biofiltration of methane from ruminants gas effluent using autoclaved aerated concrete as the carrier material. Chem. Eng. J. 277: 318-323. https://doi.org/10.1016/j.cej.2015.04.128
- Wu YM, Yang J, Fan XL, Fu SF, Sun MT, Guo RB. 2017. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria. Bioresour. Technol. 231: 124-128. https://doi.org/10.1016/j.biortech.2017.01.020
- Scheutz C, Fredenslund AM, Chanton J, Pedersen GB, Kjeldsen P. 2011. Mitigation of methane emission from Fakse landfill using a biowindow system. Waste Manage. 31: 1018-1028. https://doi.org/10.1016/j.wasman.2011.01.024
- Adams BL, Besnard F, Bogner J, Hilger H. 2011. Bio-tarp alternative daily cover prototypes for methane oxidation atop open landfill cells. Waste Manage. 31: 1065-1073. https://doi.org/10.1016/j.wasman.2011.01.003
- Mei J, Wang L, Han D, Zhao Y. 2011. Methanotrophic community structure of aged refuse and its capability for methane bio-oxidation. J. Environ. Sci. 23: 868-874. https://doi.org/10.1016/S1001-0742(10)60536-0
- Kumaresan D, Héry M, Bodrossy L, Singer AC, Stralis-Pavese N, Thompson IP, et al. 2011. Earthworm activity in a simulated landfill cover soil shifts the community composition of active methanotrophs. Res. Microbiol. 162: 1027-1032. https://doi.org/10.1016/j.resmic.2011.08.002
- Zhang X, Kong JY, Xia FF, Su Y, He R. 2014. Effects of ammonium on the activity and community of methanotrophs in landfill biocover soils. System.Appl. Microbiol. 37: 296-304. https://doi.org/10.1016/j.syapm.2014.03.003
- Xing Z, Zhao T, Gao Y, He Z, Zhang L, Peng X, et al. 2017. Real-time monitoring of methane oxidation in a simulated landfill cover soil and MiSeq pyrosequencing analysis of the related bacterial community structure. Waste Manage. 68: 369-377. https://doi.org/10.1016/j.wasman.2017.05.007
- Wang X, Cao A, Zhao G, Zhou C, Xu R. 2017. Microbial community structure and diversity in a municipal solid waste landfill. Waste Manage. 66: 79-87. https://doi.org/10.1016/j.wasman.2017.04.023
- Kong JY, Bai Y, Su Y, Yao Y, He R. 2014. Effects of trichloroethylene on community structure and activity of methanotrophs in landfill cover soils. Soil Biol. Biochem. 78: 118-127. https://doi.org/10.1016/j.soilbio.2014.07.018
- Chi Z, Lu W, Wang H, Zhao Y. 2012. Diversity of methanotrophs in a simulated modified biocover reactor. J. Environ. Sci. 24: 1076-1082. https://doi.org/10.1016/S1001-0742(11)60889-9
- Ait-Benichou S, Jugnia L-B, Greer CW, Cabral AR. 2009. Methanotrophs and methanotrophic activity in engineered landfill biocovers. Waste Manage. 29: 2509-2517. https://doi.org/10.1016/j.wasman.2009.05.005
- Su Y, Zhang X, Xia FF, Zhang QQ, Kong JY, Wang J, et al. 2014. Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems. Syst. Appl. Microbiol. 37: 200-207. https://doi.org/10.1016/j.syapm.2013.10.005
Cited by
- Design and shelf stability assessment of bacterial agents for simultaneous removal of methane and odors vol.54, pp.9, 2017, https://doi.org/10.1080/10934529.2019.1607651
- Characterization of the Bacterial Community Associated with Methane and Odor in a Pilot-Scale Landfill Biocover under Moderately Thermophilic Conditions vol.31, pp.6, 2017, https://doi.org/10.4014/jmb.2103.03005
- 옥수수와 톨페스큐 근권 유래의 메탄 산화 및 아산화질소 환원 세균 컨소시움 특성 vol.49, pp.2, 2017, https://doi.org/10.48022/mbl.2102.02007