DOI QR코드

DOI QR Code

Methane Mitigation Technology Using Methanotrophs: A Review

Methanotrophs을 이용한 메탄 저감 기술 최신 동향

  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Jung, Hyekyeng (Department of Environmental Science and Engineering, Ewha Womans University)
  • 조경숙 (이화여자대학교 환경공학과) ;
  • 정혜경 (이화여자대학교 환경공학과)
  • Received : 2017.07.31
  • Accepted : 2017.09.19
  • Published : 2017.09.28

Abstract

Methane, which is emitted from natural and anthropogenic sources, is a representative greenhouse gas for global warming. Methanotrophs are widespread in the environment and play an important role in the biological oxidation of methane via methane monooxygenases (MMOs), key enzymes for methane oxidation with broad substrate specificity. Methanotrophs have attracted attention as multifunctional bacteria with promising applications in biological methane mitigation technology and environmental bioremediation. In this review, we have summarized current knowledge regarding the biodiversity of methanotrophs, catalytic properties of MMOs, and high-cell density cultivation technology. In addition, we have reviewed the recent advances in biological methane mitigation technologies using methanotrophs in field-scale systems as well as in lab-scale bioreactors. We have also surveyed information on the dynamics of the methanotrophic community in biological systems and discussed the various challenges pertaining to methanotroph-related biotechnological innovation, such as identification of suitable methanotrophic strains with better and/or novel metabolic activity, development of high-cell density mass cultivation technology, and the microbial consortium (methanotrophs and non-methanotrophs consortium) design and control technology.

메탄은 자연적인 발생원과 인위적인 발생원에 의해 배출되며 지구온난화를 야기하는 대표적인 온실가스이다. 메탄을 탄소원과 에너지원으로 이용하는 메탄산화세균은 메탄의 생물학적 산화에 중요한 역할을 한다. 메탄산화세균의 서식지는 매우 다양하며 메탄산화반응의 핵심 효소인 methane monooxygenases (MMOs)는 메탄뿐 아니라 다른 기질을 산화할 수 있는 기질특이성을 가지고 있다. 이러한 메탄산화세균의 특성으로 인해 생물학적 메탄 저감 기술과 생물정화기술 분야에서 메탄산화세균의 활용에 대한 연구가 활발히 진행되고 있다. 본 총설 논문에서는 메탄산화세균의 종류, MMOs의 특성과 메탄산화세균의 고농도 배양 기술에 관한 최근 정보를 정리하였다. 또한 메탄산화세균을 이용한 생물학적 메탄 저감 관련 실험실 규모와 매립지 현장에서의 기술 개발 현황 및 적용 결과를 소개하였다. 이러한 생물학적 메탄 저감 시스템에서 메탄산화세균의 군집 거동 특성도 고찰하였다. 마지막으로, 메탄산화세균을 활용한 생물공학기술의 혁신을 위해 필요한 과제로 대사활성이 우수하거나 신규 대사능력을 가진 메탄산화세균의 지속적인 탐색 연구, 고농도 세포 대량배양기술 개발 및 미생물 컨소시움(메탄산화세균과 비메탄산화세균의 컨소시움) 디자인 및 관리 기술 등이 필요함을 제안하였다.

Keywords

References

  1. Stolaroff JK, Bhattacharyya S, Smith CA, Bourcier WL, Cameron-Smith PJ, Aines RD. 2012. Review of methane mitigation technologies with application to rapid release of methane from the Arctic. Environ. Sci. Technol. 46: 6455-6469. https://doi.org/10.1021/es204686w
  2. Cho KS, Ryu HW. 2009. Biotechnology for the mitigation of methane emission from landfills. Korean J. Microbiol. Biotechnol. 37: 293-305.
  3. EPA. 2011. Draft: Global Anthropogenic Non-$CO_2$ GHG Emissions: 1990-2030; U.S. Environmental Protection Agency: Washington, DC.
  4. Boucher O, Folberth GA. 2010. New directions: atmospheric methane removal as a way to mitigate climate change? Atmos. Environ. 44: 3343-3345. https://doi.org/10.1016/j.atmosenv.2010.04.032
  5. Carothers FP, Schultz HL, Talkington CC. 2003. Mitigation of methane emissions from coal mine ventilation air: An update. US Environmental Protection Agency: Washington, DC.
  6. Kalyuzhnaya MG, Puri AW, Lidstrom ME. 2015. Metabolic engineering in methanotrophic bacteria. Metab. Eng. 29: 142-152. https://doi.org/10.1016/j.ymben.2015.03.010
  7. Chistoserdova L, Vorholt JA, Lidstrom ME. 2005. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol. 6: 208. https://doi.org/10.1186/gb-2005-6-2-208
  8. Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, et al. 2007. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450: 879. https://doi.org/10.1038/nature06411
  9. Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland N-K. 2008. Methane oxidation at 55 C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc. Natl. Acad. Sci. 105: 300-304. https://doi.org/10.1073/pnas.0704162105
  10. van Teeseling MC, Pol A, Harhangi HR, van der Zwart S, Jetten MS, den Camp HJO, et al. 2014. Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl. Environ. Microbiol. 80: 6782-6791. https://doi.org/10.1128/AEM.01838-14
  11. Stoecker K, Bendinger B, Schoning B, Nielsen PH, Nielsen JL, Baranyi C, et al. 2006. Cohn's Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc. Natl. Acad. Sci. USA 103: 2363-2367. https://doi.org/10.1073/pnas.0506361103
  12. Vigliotta G, Nutricati E, Carata E, Tredici SM, De Stefano M, Pontieri P, et al. 2007. Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic $\gamma$-proteobacterium. Appl. Environ. Microbiol. 73: 3556-3565. https://doi.org/10.1128/AEM.02678-06
  13. Lee JH, Kim TG, Cho KS. 2012. Isolation and characterization of a facultative methanotroph degrading malodor-causing volatile sulfur compounds. J. Hazard. Mater. 235: 224-229.
  14. Zhang W, Ge X, Li YF, Yu Z, Li Y. 2016. Isolation of a methanotroph from a hydrogen sulfide-rich anaerobic digester for methanol production from biogas. Proc. Biochem. 51: 838-844. https://doi.org/10.1016/j.procbio.2016.04.003
  15. ReuB J, Rachel R, Kämpfer P, Rabenstein A, Küver J, Droge S, et al. 2015. Isolation of methanotrophic bacteria from termite gut. Microbiol. Res. 179: 29-37. https://doi.org/10.1016/j.micres.2015.06.003
  16. Bowman JP, McCammon SA, Skerrat JH. 1997. Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143: 1451-1459. https://doi.org/10.1099/00221287-143-4-1451
  17. Bodrossy L, Kovács KL, McDonald IR, Murrell JC. 1999. A novel thermophilic methane-oxidising $\gamma$-Proteobacterium. FEMS Microbiol. Lett. 170: 335-341.
  18. Kang TJ, Lee EY. 2016. Metabolic versatility of microbial methane oxidation for biocatalytic methane conversion. J. Ind. Eng. Chem. 35: 8-13. https://doi.org/10.1016/j.jiec.2016.01.017
  19. Costa KC, Leigh JA. 2014. Metabolic versatility in methanogens. Curr. Opin. Biotechnol. 29: 70-75. https://doi.org/10.1016/j.copbio.2014.02.012
  20. Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, et al. 2010. Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem. Eng. J. 49: 277-288. https://doi.org/10.1016/j.bej.2010.01.003
  21. Hanson RS, Hanson TE. 1996. Methanotrophic bacteria. Microbiol. Rev. 60: 439-471.
  22. Stanley S, Prior S, Leak D, Dalton H. 1983. Copper stress underlies the fundamental change in intracellular location of methane mono-oxygenase in methane-oxidizing organisms: studies in batch and continuous cultures. Biotechnol. Lett. 5: 487-492. https://doi.org/10.1007/BF00132233
  23. Smith DDS, Dalton H. 1989. Solubilisation of methane monooxygenase from Methylococcus capsulatus (Bath). The FEBS J. 182: 667-671.
  24. Elliott SJ, Zhu M, Tso L, Nguyen H-HT, Yip JH-K, Chan SI. 1997. Regio-and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 119: 9949-9955. https://doi.org/10.1021/ja971049g
  25. Lontoh S, Zahn JA, DiSpirito AA, Semrau JD. 2000. Identification of intermediates of in vivo trichloroethylene oxidation by the membrane-associated methane monooxygenase. FEMS Microbiol. Lett. 186: 109-113. https://doi.org/10.1111/j.1574-6968.2000.tb09090.x
  26. Colby J, Stirling DI, Dalton H. 1977. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem. J. 165: 395-402. https://doi.org/10.1042/bj1650395
  27. Green J, Dalton H. 1989. Substrate specificity of soluble methane monooxygenase. Mechanistic implications. J. Biol. Chem. 264: 17698-17703.
  28. Burrows KJ, Cornish A, Scott D, Higgins IJ. 1984. Substrate specificities of the soluble and particulate methane mono-oxygenases of Methylosinus trichosporium OB3b. Microbiology 130: 3327-3333. https://doi.org/10.1099/00221287-130-12-3327
  29. Fox BG, Borneman JG, Wackett LP, Lipscomb JD. 1990. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29: 6419-6427. https://doi.org/10.1021/bi00479a013
  30. Brusseau GA, Tsien H-C, Hanson RS, Wackett LP. 1990. Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation 1: 19-29. https://doi.org/10.1007/BF00117048
  31. Lindner AS, Adriaens P, Semrau JD. 2000. Transformation of ortho-substituted biphenyls by Methylosinus trichosporium OB3b: substituent effects on oxidation kinetics and product formation. Arch. Microbiol. 174: 35-41. https://doi.org/10.1007/s002030000170
  32. Dalton H. 1977. Ammonia oxidation by the methane oxidising bacterium Methylococcus capsulatus strain Bath. Arch. Microbiol. 114: 273-279. https://doi.org/10.1007/BF00446873
  33. Shah NN, Park S, Taylor RT, Droege MW. 1992. Cultivation of Methylosinus trichosporium OB3b: III. Production of particulate methane monooxygenase in continuous culture. Biotechnol. Bioeng. 40: 705-712. https://doi.org/10.1002/bit.260400609
  34. Shah NN, Hanna ML, Jackson KJ, Taylor RT. 1995. Batch cultivation of Methylosinus trichosporium OB3B: IV. Production of hydrogen‐driven soluble or particulate methane monooxygenase activity. Biotechnol. Bioeng. 45: 229-238. https://doi.org/10.1002/bit.260450307
  35. Lee J, Soni BK, Kelley RL. 1996. Cell growth and oxygen transfer in Methylosinus trichosporium OB3b cultures. Biotechnol. Lett. 18: 903-908. https://doi.org/10.1007/BF00154618
  36. Takeguchi M, Okura I. 2000. Role of iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b. Catal. Surv. Japan. 4: 51-63. https://doi.org/10.1023/A:1019036105038
  37. Han B, Su T, Wu H, Gou Z, Xing X-H, Jiang H, et al. 2009. Paraffin oil as a "methane vector" for rapid and high cell density cultivation of Methylosinus trichosporium OB3b. Appl. Microbiol. Biotechnol. 83: 669-677. https://doi.org/10.1007/s00253-009-1866-2
  38. Yu SSF, Chen KHC, Tseng MYH, Wang YS, Tseng CF, Chen YJ, et al. 2003. Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. J. Bacteriol. 185: 5915-5924. https://doi.org/10.1128/JB.185.20.5915-5924.2003
  39. Jiang H, Duan C, Jiang P, Liu M, Luo M, Xing X-H. 2016. Characteristics of scale-up fermentation of mixed methane-oxidizing bacteria. Biochem. Eng. J. 109: 112-117. https://doi.org/10.1016/j.bej.2015.12.001
  40. Adegbola O. 2008. High cell density methanol cultivation of Methylosinus trichosporium OB3b. Department of Chemical Engineering, Master of Science, Queen's University, Kingston
  41. Huber-Humer M, Gebert J, Hilger H. 2008. Biotic systems to mitigate landfill methane emissions. Waste Manage. Res. 26: 33-46. https://doi.org/10.1177/0734242X07087977
  42. Majdinasab A, Yuan Q. 2017. Performance of the biotic systems for reducing methane emissions from landfill sites: A review. Ecol. Eng. 104: 116-130. https://doi.org/10.1016/j.ecoleng.2017.04.015
  43. Scheutz C, Kjeldsen P, Bogner JE, De Visscher A, Gebert J, Hilger HA, et al. 2009. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manage. Res. 27: 409-455. https://doi.org/10.1177/0734242X09339325
  44. Bajar S, Singh A, Kaushik C, Kaushik A. 2016. Evaluation and statistical optimization of methane oxidation using rice husk amended dumpsite soil as biocover. Waste Manage. 53: 136-143. https://doi.org/10.1016/j.wasman.2015.09.023
  45. Wang J, Xia FF, Bai Y, Fang CR, Shen DS, He R. 2011. Methane oxidation in landfill waste biocover soil: kinetics and sensitivity to ambient conditions. Waste Manage. 31: 864-870. https://doi.org/10.1016/j.wasman.2011.01.026
  46. Siva Shangari G, Agamuthu P. 2012. Enhancing methane oxidation in landfill cover using brewery spent grain as biocover. Malaysian J. Sci. 31: 91-97. https://doi.org/10.22452/mjs.vol31no2.8
  47. Pedersen GB, Scheutz C, Kjeldsen P. 2011. Availability and properties of materials for the Fakse landfill biocover. Waste Manage. 31: 884-894. https://doi.org/10.1016/j.wasman.2010.11.020
  48. Lu WJ, Chi ZF, Mou ZS, Long YY, Wang HT, Zhu Y. 2011. Can a breathing biocover system enhance methane emission reduction from landfill? J. Hazard. Mater. 191: 228-233. https://doi.org/10.1016/j.jhazmat.2011.04.068
  49. Lee EH, Moon KE, Kim TG, Cho KS. 2014. Depth profiles of methane oxidation potentials and methanotrophic community in a lab-scale biocover. J. Biotechnol. 184: 56-62. https://doi.org/10.1016/j.jbiotec.2014.05.006
  50. Lee EH, Moon KE, Cho KS. 2017. Long-term performance and bacterial community dynamics in biocovers for mitigating methane and malodorous gases. J. Biotechnology 242: 1-10. https://doi.org/10.1016/j.jbiotec.2016.12.007
  51. Kim GW, Ho A, Kim PJ, Kim SY. 2016. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover. Waste Manage. 55: 306-312. https://doi.org/10.1016/j.wasman.2016.03.058
  52. Bogner JE, Chanton JP, Blake D, Abichou T, Powelson D. 2010. Effectiveness of a Florida landfill biocover for reduction of $CH_4$ and NMHC emissions. Environ. Sci. Technol. 44: 1197-1203. https://doi.org/10.1021/es901796k
  53. Scheutz C, Pedersen RB, Petersen PH, Jorgensen JHB, Ucendo IMB, Monster JG, et al. 2014. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system. Waste Manage. 34: 1179-1190. https://doi.org/10.1016/j.wasman.2014.03.015
  54. Mei C, Yazdani R, Han B, Mostafid ME, Chanton J, Vander-Gheynst J, et al. 2015. Performance of green waste biocovers for enhancing methane oxidation. Waste Manage. 39: 205-215. https://doi.org/10.1016/j.wasman.2015.01.042
  55. Geck C, Scharff H, Pfeiffer E-M, Gebert J. 2016. Validation of a simple model to predict the performance of methane oxidation systems, using field data from a large scale biocover test field. Waste Manage. 56: 280-289. https://doi.org/10.1016/j.wasman.2016.06.006
  56. Cassini F, Scheutz C, Skov BH, Mou Z, Kjeldsen P. 2017. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljo Landfill, Denmark: 1. System design and gas distribution. Waste Manage. 63: 213-225. https://doi.org/10.1016/j.wasman.2017.01.013
  57. Scheutz C, Cassini F, De Schoenmaeker J, Kjeldsen P. 2017. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljo Landfill, Denmark: 2. Methane oxidation. Waste Manage. 63: 203-212. https://doi.org/10.1016/j.wasman.2017.01.012
  58. Bohn S, Brunke P, Gebert J, Jager J. 2011. Improving the aeration of critical fine-grained landfill top cover material by vegetation to increase the microbial methane oxidation efficiency. Waste Manage. 31: 854-863. https://doi.org/10.1016/j.wasman.2010.11.009
  59. Kim TG, Jeong SY, Cho KS. 2014. Characterization of tobermolite as a bed material for selective growth of methanotrophs in biofiltration. J. Biotechnol. 173: 90-97. https://doi.org/10.1016/j.jbiotec.2014.01.010
  60. Han D, Zhao Y, Xue B, Chai X. 2010. Effect of bio-column composed of aged refuse on methane abatement-A novel configuration of biological oxidation in refuse landfill. J. Environ. Sci. 22: 769-776. https://doi.org/10.1016/S1001-0742(09)60175-3
  61. Farrokhzadeh H, Hettiaratchi JPA, Jayasinghe P, Kumar S. 2017. Aerated biofilters with multiple-level air injection configurations to enhance biological treatment of methane emissions. Bioresour. Technol. 239: 219-225. https://doi.org/10.1016/j.biortech.2017.05.009
  62. Ganendra G, Mercado-Garcia D, Hernandez-Sanabria E, Peiren N, De Campeneere S, Ho A, et al. 2015. Biofiltration of methane from ruminants gas effluent using autoclaved aerated concrete as the carrier material. Chem. Eng. J. 277: 318-323. https://doi.org/10.1016/j.cej.2015.04.128
  63. Wu YM, Yang J, Fan XL, Fu SF, Sun MT, Guo RB. 2017. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria. Bioresour. Technol. 231: 124-128. https://doi.org/10.1016/j.biortech.2017.01.020
  64. Scheutz C, Fredenslund AM, Chanton J, Pedersen GB, Kjeldsen P. 2011. Mitigation of methane emission from Fakse landfill using a biowindow system. Waste Manage. 31: 1018-1028. https://doi.org/10.1016/j.wasman.2011.01.024
  65. Adams BL, Besnard F, Bogner J, Hilger H. 2011. Bio-tarp alternative daily cover prototypes for methane oxidation atop open landfill cells. Waste Manage. 31: 1065-1073. https://doi.org/10.1016/j.wasman.2011.01.003
  66. Mei J, Wang L, Han D, Zhao Y. 2011. Methanotrophic community structure of aged refuse and its capability for methane bio-oxidation. J. Environ. Sci. 23: 868-874. https://doi.org/10.1016/S1001-0742(10)60536-0
  67. Kumaresan D, Héry M, Bodrossy L, Singer AC, Stralis-Pavese N, Thompson IP, et al. 2011. Earthworm activity in a simulated landfill cover soil shifts the community composition of active methanotrophs. Res. Microbiol. 162: 1027-1032. https://doi.org/10.1016/j.resmic.2011.08.002
  68. Zhang X, Kong JY, Xia FF, Su Y, He R. 2014. Effects of ammonium on the activity and community of methanotrophs in landfill biocover soils. System.Appl. Microbiol. 37: 296-304. https://doi.org/10.1016/j.syapm.2014.03.003
  69. Xing Z, Zhao T, Gao Y, He Z, Zhang L, Peng X, et al. 2017. Real-time monitoring of methane oxidation in a simulated landfill cover soil and MiSeq pyrosequencing analysis of the related bacterial community structure. Waste Manage. 68: 369-377. https://doi.org/10.1016/j.wasman.2017.05.007
  70. Wang X, Cao A, Zhao G, Zhou C, Xu R. 2017. Microbial community structure and diversity in a municipal solid waste landfill. Waste Manage. 66: 79-87. https://doi.org/10.1016/j.wasman.2017.04.023
  71. Kong JY, Bai Y, Su Y, Yao Y, He R. 2014. Effects of trichloroethylene on community structure and activity of methanotrophs in landfill cover soils. Soil Biol. Biochem. 78: 118-127. https://doi.org/10.1016/j.soilbio.2014.07.018
  72. Chi Z, Lu W, Wang H, Zhao Y. 2012. Diversity of methanotrophs in a simulated modified biocover reactor. J. Environ. Sci. 24: 1076-1082. https://doi.org/10.1016/S1001-0742(11)60889-9
  73. Ait-Benichou S, Jugnia L-B, Greer CW, Cabral AR. 2009. Methanotrophs and methanotrophic activity in engineered landfill biocovers. Waste Manage. 29: 2509-2517. https://doi.org/10.1016/j.wasman.2009.05.005
  74. Su Y, Zhang X, Xia FF, Zhang QQ, Kong JY, Wang J, et al. 2014. Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems. Syst. Appl. Microbiol. 37: 200-207. https://doi.org/10.1016/j.syapm.2013.10.005

Cited by

  1. Design and shelf stability assessment of bacterial agents for simultaneous removal of methane and odors vol.54, pp.9, 2017, https://doi.org/10.1080/10934529.2019.1607651
  2. Characterization of the Bacterial Community Associated with Methane and Odor in a Pilot-Scale Landfill Biocover under Moderately Thermophilic Conditions vol.31, pp.6, 2017, https://doi.org/10.4014/jmb.2103.03005
  3. 옥수수와 톨페스큐 근권 유래의 메탄 산화 및 아산화질소 환원 세균 컨소시움 특성 vol.49, pp.2, 2017, https://doi.org/10.48022/mbl.2102.02007