DOI QR코드

DOI QR Code

Anti-proliferative and Antioxidant Activities of 1-methoxy-3-methyl-8-hydroxy-anthraquinone, a Hydroxyanthraquinoid Extrolite Produced by Amycolatopsis thermoflava strain SFMA-103

  • Kumar, C. Ganesh (Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology) ;
  • Mongolla, Poornima (Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology) ;
  • Chandrasekhar, Cheemalamarri (Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology) ;
  • Poornachandra, Yedla (Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology) ;
  • Siva, Bandi (Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology) ;
  • Babu, K. Suresh (Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology) ;
  • Ramakrishna, Kallaganti Venkata Siva (Nuclear Magnetic Resonance Centre, CSIR-Indian Institute of Chemical Technology)
  • Received : 2017.05.04
  • Accepted : 2017.06.26
  • Published : 2017.09.28

Abstract

Actinobacteria are prolific producers of a large number of natural products with diverse biological activities. In the present study, an actinobacterium isolated from sunflower rhizosphere soil sample collected from Medak, Andhra Pradesh, South India was identified as Amycolatopsis thermoflava strain SFMA-103. A pigmented secondary metabolite in culture broth was extracted by using methanol and it was further purified by silica gel column chromatography with methanol-chloroform solvent system. Structural elucidation studies based on UV-visible, 1D and 2D-NMR, FT-IR, and mass spectroscopic analyses confirmed the structure as 1-methoxy-3-methyl-8-hydroxy-anthraquinone. It showed significant in vitro anticancer activity against lung cancer and lymphoblastic leukemia cells with $IC_{50}$ values of 10.3 and $16.98{\mu}M$, respectively. In addition, 1-methoxy-3-methyl-8-hydroxy-anthraquinone showed good free radical scavenging activity by DPPH method with an $EC_{50}$ of $18.2{\mu}g/ml$. It also showed other promising superoxide radical scavenging, nitric oxide radical scavenging and inhibition of lipid peroxidation activities. This is a first report of anti-proliferative and antioxidant activities of 1-methoxy-3-methyl-8-hydroxy-anthraquinone isolated from A. thermoflava strain SFMA-103 which may find potential application in biotechnological and pharmaceutical fields.

Keywords

References

  1. Lancini G, Lorenzetti R. 1993. Biotechnology of antibiotics and other bioactive microbial metabolites. pp. 49-57. Plenum Press, New York and London.
  2. Lazzarini A, Cavaletti L, Toppo G, Marinelli F. 2000. Rare genera of actinomycetes as potential producers of new antibiotics. Antonie van Leeuwenhoek 78: 399-405. https://doi.org/10.1023/A:1010287600557
  3. Jensen PR, Mincer TJ, Williams PG, Fenical W. 2005. Marine actinomycete diversity and natural product discovery. Antonie van Leeuwenhoek 87: 43-48. https://doi.org/10.1007/s10482-004-6540-1
  4. Caro Y, Anamale L, Fouillaud M, Laurent P, Petit T, Dufosse L. 2012. Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview. Nat. Prod. Bioprospect. 2: 174-193. https://doi.org/10.1007/s13659-012-0086-0
  5. Byrstrykh LV, Fernandez-Moreno MA, Herrema JK, Malpartida F, Hopwood DA, Dukhuizen L. 1996. Production of actinorhodin-related "blue-pigments" by Streptomyces coelicolor A3(2). J. Bacteriol. 178: 2238-2244. https://doi.org/10.1128/jb.178.8.2238-2244.1996
  6. Clark B, Capon RJ, Stewart M, Lacey E, Tennant S, Gill JH. 2004. Blanchaquinone: A new anthraquinone from an Australian Streptomyces sp. J. Nat. Prod. 67: 1729-1731. https://doi.org/10.1021/np049826v
  7. Adinarayana G, Venkateshan MR, Bapiraju VVSNK, Sujatha P, Premkumar J, Ellaiah P, Zeeck A. 2006. Cytotoxic compounds from the marine actinobacterium Streptomyces corchorusii AUBN(1)/7. Russ. J. Bioorg. Chem. 32: 295-300. https://doi.org/10.1134/S1068162006030125
  8. Igarashi Y, Trujillo M E, Martinez-Molina E, Yanase S, Miyanaga S, Obata T, et al. 2007. Antitumor anthraquinones from an endophytic actinomycete Micromonospora lupini sp. nov. Bioorg. Med. Chem. Lett. 17: 3702-3705. https://doi.org/10.1016/j.bmcl.2007.04.039
  9. Xue CM, Tian L, Lin WH, Deng ZW. 2009. Anthraquinone derivatives from Micromonospora rhodorangea. Nat. Prod. Res. 23: 533-538. https://doi.org/10.1080/14786410600898961
  10. Balachandran C, Arun Y, Duraipandiyan V, Ignacimuthu S, Balakrishna K, Al-Dhabi NA. 2014. Antimicrobial and cytotoxicity properties of 2,3-dihydroxy-9,10-anthraquinone isolated from Streptomyces galbus (ERINLG-127). Appl. Biochem. Biotechnol. 172: 3513-3528. https://doi.org/10.1007/s12010-014-0783-8
  11. Balachandran C, Duraipandiyan V, Arun Y, Sangeetha B, Emi N, Al-Dhabi NA, et al. 2016. Isolation and characterization of 2-hydroxy-9,10-anthraquinone from Streptomyces olivochromogenes (ERINLG-261) with antimicrobial and antiproliferative properties. Revista Brasileira de Farmacognosia 26: 285-295. https://doi.org/10.1016/j.bjp.2015.12.003
  12. Shirling EB, Gottlieb D. 1996. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16: 313-340.
  13. Chun J, Kim SB, Oh YK, Seong CN, Lee DH, Bae KS, et al. 1999. Amycolatopsis thermoflava sp. nov., a novel soil actinomycete from Hainan Island, China. Int. J. Syst. Bacteriol. 49: 1369-1373. https://doi.org/10.1099/00207713-49-4-1369
  14. Haque SK, Sen SK, Pal SC. 1992. Screening and identification of antibiotic producing strains of Streptomyces. Hindustan Antibiot. Bull. 4: 76-83.
  15. Rainey FA, Rainey NW, Kroppenstedt RM, Stackebrandt E. 1996. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsiaceae fam. nov. Int. J. Syst. Bacteriol. 46: 1088-1092. https://doi.org/10.1099/00207713-46-4-1088
  16. Tamura K, Nei M. 1983. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512-526.
  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetic Analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
  18. Moon JH, Terao J. 1998. Antioxidant activity of caffeic acid and dihydrocaffeic acid in lard and human low-density lipoprotein. J. Agric. Food Chem. 46: 5062-5065. https://doi.org/10.1021/jf9805799
  19. Bors W, Heller W, Michel C, Saran M. 1990. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol. 186: 343-355.
  20. Liu F, Ooi VE, Chang ST. 1997. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci. 60: 763-771. https://doi.org/10.1016/S0024-3205(97)00004-0
  21. Zhang EX, Yu LJ. 1997. Studies on polysaccharide from Sargassum thunberg II for its ability to scavenge active oxygen species. Chin. J. Mar. Drugs 3: 1-4.
  22. Marcocci L, Packer L, Droy-Lefaix MT, Sekaki A, Gardes-Albert M. 1994. Antioxidant action of Ginkgo biloba extract EGb 761. Methods Enzymol. 234: 462-475.
  23. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival; application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  24. Kim B, Sahin N, Tan GYA, Zakrzewska-Czerwinska J, Goodfellow M. 2002. Amycolatopsis eurytherma sp. nov., a thermophilic actinomycete isolated from soil. Int. J. Syst. Evol. Microbiol. 52: 889-894.
  25. Huang Q, Lu G, Shen HM, Chung MC, Ong CN. 2007. Anti-cancer properties of anthraquinones from rhubarb. Med. Res. Rev. 27: 609-630. https://doi.org/10.1002/med.20094
  26. Mao H, Schnetz-Boutaud NC, Weisenseel JP, Marnett LJ, Stone MP. 1999. Duplex DNA catalyzes the chemical rearrangement of a malondialdehyde deoxyguanosine adduct. Proc. Nat. Acad. Sci. USA 96: 6615-6620. https://doi.org/10.1073/pnas.96.12.6615
  27. Marnett LJ. 1999. Lipid peroxidation - DNA damage by malondialdehyde. Mutat. Res. 424: 83-95. https://doi.org/10.1016/S0027-5107(99)00010-X
  28. Hu Y, Martinez ED, MacMillan JB. 2012. Anthraquinones from a marine-derived Streptomyces spinoverrucosus. J. Nat. Prod. 75: 1759-1764. https://doi.org/10.1021/np3004326
  29. Raju R, Gromyko O, Fedorenko V, Herrmann J, Luzhetskyy A, Muller R. 2013. Rubimycinone A, a new anthraquinone from a terrestrial Streptomyces sp. Tetrahedron Lett. 54: 900-902. https://doi.org/10.1016/j.tetlet.2012.11.130
  30. Huang YF, Tian L, Fu HW, Hua HM Pei YH. 2006. One new anthraquinone from marine Streptomyces sp. FX-58. Nat. Prod. Res. 20: 1207-1210. https://doi.org/10.1080/14786410600899142
  31. Murphy BT, Narender T, Kauffman CA, Woolery M, Jensen PR, Fenical W. 2010. Saliniquinones A-F, new members of the highly cytotoxic anthraquinone-$\gamma$-pyrones from the marine actinomycete Salinispora arenicola. Aust. J. Chem. 63: 929-934. https://doi.org/10.1071/CH10068

Cited by

  1. Anti-hyperglycemic and genotoxic studies of 1-O-methyl chrysophanol, a new anthraquinone isolated from Amycolatopsis thermoflava strain SFMA-103 vol.44, pp.2, 2021, https://doi.org/10.1080/01480545.2018.1551406
  2. Secondary Metabolites of the Genus Amycolatopsis: Structures, Bioactivities and Biosynthesis vol.26, pp.7, 2017, https://doi.org/10.3390/molecules26071884
  3. Looking Back to Amycolatopsis: History of the Antibiotic Discovery and Future Prospects vol.10, pp.10, 2017, https://doi.org/10.3390/antibiotics10101254