DOI QR코드

DOI QR Code

The microbial diversity analysis of the Korea traditional post-fermented tea (Chungtaejeon)

한국 전통 미생물발효차(청태전)의 미생물 군집분석

  • Kim, Byung-Hyuk (National Institute of Horticultural and Herbal Science, RDA) ;
  • Jang, Jong-Ok (National Institute of Horticultural and Herbal Science, RDA) ;
  • Kang, Zion (BioSynectics) ;
  • Joa, Jae Ho (National Institute of Horticultural and Herbal Science, RDA) ;
  • Moon, Doo-Gyung (National Institute of Horticultural and Herbal Science, RDA)
  • 김병혁 (농촌진흥청 국립원예특작과학원) ;
  • 장종옥 (농촌진흥청 국립원예특작과학원) ;
  • 강시온 (바이오시네틱스) ;
  • 좌재호 (농촌진흥청 국립원예특작과학원) ;
  • 문두경 (농촌진흥청 국립원예특작과학원)
  • Received : 2017.08.04
  • Accepted : 2017.09.21
  • Published : 2017.09.30

Abstract

Tea is the most popular beverage in the world. In fact, there are mainly three different kinds of tea (Green tea, black tea, and post-fermented tea). Post-fermented tea is produced by the microbial fermentation process using sun-dried green tea leaves (Camellia sinensis) as the raw material. Chungtaejeon was a traditional tea introduced in the age of the ancient three states and is the only "Ddeok-cha or Don-cha" culture in the world that survived on the southwestern shore of Republic of Korea. In this study, the structures of the bacterial community involved in the production of oriental traditional post-fermented tea (Chungtaejeon) were investigated using 16S rRNA gene analysis. The 16S rRNA gene analysis of dominant microbial bacteria in post-fermented tea confirmed the presence of Pantoea sp., and Klebsiella oxytoca. Phylogenetic analysis suggested that the taxonomic affiliation of the dominant species in the post-fermented tea was ${\gamma}$-proteobacteria. As a result of the microbial community size analysis, it was confirmed that the size of the microbial communities of Chungtaejeon was the largest compared to other teas

차는 세계적으로 인기있는 음료로 불발효차(녹차), 반발효차(우롱차), 완전발효차(홍차)와 흑차(미생물발효차 or 후발효차)를 포함하고 구분된다. 미생물발효차는 차나무(Camellia sinensis)의 잎을 미생물 발효과정을 통해 제조된다. 삼국시대부터 전해 내려온 청태전은 한국 남해안지역에서 제조되며 돈차 또는 떡차로 불리는 독창적인 한국의 미생물발효차이다. 본 연구에서는 청태전에 우점하는 미생물군집구조 분석을 위해 16S rRNA 유전자를 이용하였다. 청태전에 우점하는 미생물은 ${\gamma}$-proteobacteria에 속하는 Pantoea sp.와 Klebsiella oxytoca가 우점하였다. 미생물 군집크기 분석을 통해 청태전의 미생물 군집크기가 다른 미생물발효차와 비교해 가장 큰 것을 확인하였다.

Keywords

References

  1. Abe, M., Takaoka, N., Idemoto, Y., Takagi, C., Imai, T., and Nakasaki, K. 2008. Characteristic fungi observed in the fermentation process for Puer tea. Int. J. Food Microbiol. 124, 199-203. https://doi.org/10.1016/j.ijfoodmicro.2008.03.008
  2. Baik, K.S., Seong, C.N., Hwang, Y.M., Kim, G.A., Lee, N.R., Kim, D., Cho, J.Y., Kim, S.J., Park, E.H., and Moon, J.H. 2012. Micorbial diversity of Ddek cha using DNA sequence analysis. J. Korean Tea Soc. 18, 86-91.
  3. Basu, A. and Lucas, E.A. 2007. Mechanisms and effects of green tea on cardiovascular health. Nutr. Rev. 65, 361-375. https://doi.org/10.1111/j.1753-4887.2007.tb00314.x
  4. Cabrera, C., Artacho, R., and Gimenez, P.R. 2006. Beneficial effects of green tea-A Review. J. Am. Coll. Nutr. 25, 79-99. https://doi.org/10.1080/07315724.2006.10719518
  5. Chen, Y.S., Liu, B.L., and Chang, Y.N. 2010. Bioactivities and sensory evaluation of Pu-erh teas made from three tea liaves in an imporved pile fermentation process. J. Biosci. Bioeng. 109, 557-563. https://doi.org/10.1016/j.jbiosc.2009.11.004
  6. Cremonesi, L., Firpo, S., Ferrari, M., Righetti, P.G., and Gelfi, C. 1997. Double-gradient DGGE for optimized detection of DNA point mutations. BioTechniques 22, 326-330.
  7. de Quadros, P.D., Zhalnina, K., Davis-Richardson, A.G., Drew, J.C., Menezes, F.B., Camargo, F.A.d.O., and Triplett, E.W. 2016. Coal mining practices reduce the microbial biomass, richness and diversity of soil. Appl. Soil Ecology 98, 195-203. https://doi.org/10.1016/j.apsoil.2015.10.016
  8. Forney, L.J., Zhou, X., and Brown, C.J. 2004. Molecular microbial ecology: land of the one-eyed king. Curr. Opin. Microbiol. 7, 210-220. https://doi.org/10.1016/j.mib.2004.04.015
  9. Gantner, S., Andersson, A.F., Alonso-Saez, L., and Bertilsson, S. 2011. Novel primers for 16S rRNA-based archaeal community analyses in environmental samples. J. Microbiol. Methods 84, 12-18. https://doi.org/10.1016/j.mimet.2010.10.001
  10. Heo, B.G., Park, Y.S., Chon, S.U., Lee, S.Y., Cho, J.Y., and Gorinstein, S. 2007. Antioxidant activity and cytotoxicity of methnol extracts from aerial partsw of Korean salad plants. BioFactors 30, 79-89. https://doi.org/10.1002/biof.5520300202
  11. Ho, C.T., Lin, J.K., and Shahidi, F. 2008 Tea and tea products: chemistry and health-promoting properties. CRC press, Boca Raton, USA.
  12. Ishii, K. and Fukui, M. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67, 3753-3755. https://doi.org/10.1128/AEM.67.8.3753-3755.2001
  13. Jaspers, E., Nauhaus, K., Cypionka, H., and Overmann, J. 2001. Multitude and temporal variability of ecological niches as indicated by the diversity of cultivated bacterioplankton. FEMS Microbiol. Ecol. 36, 153-164. https://doi.org/10.1111/j.1574-6941.2001.tb00835.x
  14. Jeng, K.C., Chen, C.S., Fang, Y.P., Hou, R.C.W., and Chen, Y.S. 2007. Effect of microbial fermentation on content of statin, GABA, and polyphenols in pu-erh tea. J. Agric. Food Chem. 55, 8787-8792. https://doi.org/10.1021/jf071629p
  15. Jung, E.H. 2001. Characteristics of Korean fermented tea culture: focusing on the literature of old tea folk songs, tea poetry, and anthologies. Sungshin Womans University, Seoul, Vol. Master.
  16. Kang, D.J., Lee, S.H., Ma, S.J., and Eun, J.B. 2010. Chemical changes of microbial-fermented tea manufactured with Aspergillus niger during fermentation. J. Kor. Tea Soc. 16, 81-87.
  17. Kaplan, H., Ratering, S., Hanauer, T., Felix-Henningsen, P., and Schnell, S. 2014. Impact of trace metal contamination and in situ remediation on microbial diversity and respiratory activity of heavily polluted Kastanozems. Biol. Fertil. Soils 50, 735-744. https://doi.org/10.1007/s00374-013-0890-7
  18. Kato, M., Tamura, A., Mizooti, Y., Omor, M., Nanba, A., and Miyagaw, K. 1993. Changaes of flavor during manufacturing process of Japanese fermented tea (Awa-bancha) and its characteristic. Japan Soc. Home Economics 44, 561-565.
  19. Kato, M., Tamura, A., Omori, M., Nanba, A., Miyagawa, K., Nishimura, O., and Kamed, W. 1994. Changes of flavor during manufacturing process of Japanese fermented tea (Goishi-cha) and its characteristic. Japan Soc. Home Economics 45, 527-532.
  20. Kim, B.H., Baek, K.H., Cho, D.H., Sung, Y., Koh, S.C., Ahn, C.Y., Oh, H.M., and Kim, H.S. 2010. Complete reductive dechlorination of tetrachloroethene to ethene by anaerobic microbial enrichment culture developed from sediment. Biotechnol. Lett. 32, 1829-1835. https://doi.org/10.1007/s10529-010-0381-y
  21. Kim, B.H., Jang, J.O., Joa, J.H., Kim, J.A., Song, S.Y., Lim, C.K., Kim, C.H., Jung, Y.B., Seong, K.C., Kim, H.S., et al. 2017. A comparison of the microbial diversity in Korean and Chinese post-fermented teas. Microbiol. Biotechnol. Lett. 45, 71-80. https://doi.org/10.4014/mbl.1702.02006
  22. Kim, B.H., Ramanan, R., Cho, D.H., Oh, H.M., and Kim, H.S. 2014. Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenergy 69, 95-105. https://doi.org/10.1016/j.biombioe.2014.07.015
  23. Lv, H.P., Zhang, Y.J., Lin, Z., and Liang, Y.R. 2013. Processing and chemical constituents of Pu-erh tea: A review. Food Res. Int. 53, 608-618. https://doi.org/10.1016/j.foodres.2013.02.043
  24. Moon, J.H., Cho, J.Y., Kim, S.J., and Park, K.H. 2015. Review of the characteristics of the chemical constituents of Ddeok-cha. J. Kor. Tea Soc. 21, 1-12.
  25. Murray, A.E., Hollibaugh, J.T., and Orrego, C. 1996. Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel elctrophoresis of 16s rRNA fragments. Appl. Environ. Microbiol. 62, 2676-2680.
  26. Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2, 317-322. https://doi.org/10.1016/S1369-5274(99)80055-1
  27. Muyzer, G., de Waal, E.C., and Uitterlinden, A.G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695-700.
  28. Nakayama, T., Watanabe, S., Mitsui, K., Uchida, H., and Inouye, I. 1996. The phylogenetic relationship between the Chlamydomonadales and Chlorococcales inferred from 18S rDNA sequence data. Phycol. Res. 44, 47-55. https://doi.org/10.1111/j.1440-1835.1996.tb00037.x
  29. Park, J.S. and Cho, J.I. 2011. Isolating microorganisms to ferment traditional Cheongtaejeon. Korean J. Food Culture 26, 190-197.
  30. Park, Y.S., Lee, M.K., Ryu, H.H., and Heo, B.G. 2008. Content analysis of Chungtaejeon tea and green tea produced in Jangheung district. Korean J. Community Living Science 19, 55-61.
  31. Petri, R. and Imhoff, J.F. 2001. Genetic analysis of sea-ice bacterial communities of the Western Baltic Sea using an improved double gradient method. Polar Biol. 24, 252-257. https://doi.org/10.1007/s003000000205
  32. Scarpellini, P., Braglia, S., Carrera, P., Cedri, M., Cichero, P., Colombo, A., Crucianelli, R., Gori, A., Ferrari, M., and Lazzarin, A. 1999. Detection of rifampin resistance in Mycobacterium tuberculosis by double gradient-denaturing gradient gel electrophoresis. Antimicrob. Agents Chemother. 43, 2550-2554.
  33. Shim, H.J., Cho, J.Y., Moon, J.H., Kim, S.J., Kim, D., Shibn, K.H., and Park, K.H. 2013. Changes of bacterial communites in microbial-fermented tea during fermentation. J. Korean Tea Soc. 19, 91-98.
  34. Shon, M.Y., Kim, S.H., Nam, S.H., Park, S.K., and Sung, N.J. 2004. Antioxidant activity of Korean green and fermented tea extracts. J. Life Sci. 14, 920-924. https://doi.org/10.5352/JLS.2004.14.6.920
  35. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739. https://doi.org/10.1093/molbev/msr121
  36. Weinreb, O., Amit, T., Mandel, S., and M.B., Y. 2009. Neuroprotective molecular mechanisms of (-)-epigallocatechin-3-gallate: A reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Gene Nutr. 4, 283-296. https://doi.org/10.1007/s12263-009-0143-4
  37. Xie, J., Shu, P., Strobel, G., Chen, J., Wei, J., Xiang, Z., and Zhou, Z. 2017. Pantoea agglomerans SWg2 colonizes mulberry tissues, promotes disease protection and seedling growth. Biol. Control 113, 9-17. https://doi.org/10.1016/j.biocontrol.2017.06.010
  38. Xu, X., Yan, M., and Zhu, Y. 2005. Influence of fungal fermentation on the development of volatile compounds in the puer tea manufacturing process. Eng. Life Sci. 5, 382-386. https://doi.org/10.1002/elsc.200520083
  39. Yang, C.S., Wang, X., Lu, G., and Picinich, S.C. 2009. Cancer prevention by tea: Animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer 9, 429-439. https://doi.org/10.1038/nrc2641
  40. Zaveri, N.T. 2006. Green tea and its polyphenolic catechins: Medicinal used in cancer and noncancer application. Life Sci. 78, 2073-2080. https://doi.org/10.1016/j.lfs.2005.12.006
  41. Zeida, M., Wieser, M., Yoshida, T., Sugio, T., and Nagasawa, T. 1998. Purification and characterization of gallic acid decarboxylase from Pantoea agglomerans T71. Appl. Environ. Microbiol. 64, 4743-4747.
  42. Zhang, L., Zhang, Z.Z., Zhou, Y.B., Ling, T.J., and Wan, X.C. 2013. Chinese dark teas: Postfermentation, chemistry and biological activities. Food Res. Int. 53, 600-607. https://doi.org/10.1016/j.foodres.2013.01.016
  43. Zhang, W., Yang, R., Fang, W., Yan, L., Lu, J., Sheng, J., and Lv, J. 2016. Characterization of thermohilic fungal community associated with pile fermentation of Pu-erh tea. Int. J. Food Microbiol. 227, 29-33. https://doi.org/10.1016/j.ijfoodmicro.2016.03.025
  44. Zhao, M., Xiao, W., Ma, Y., Sun, T., Yuan, W., Tang, N., Zhang, D., Wang, Y., Li, Y., Zhou, H., and Cui, X. 2013. Sturcture and dynamics of the bacterial communities in fermentation of the traditional Chinese post-fermented pu-erh tea revealed by 16S rRNA gene clone library. World J. Microbiol. Biotechnol. 29, 1877-1884. https://doi.org/10.1007/s11274-013-1351-z
  45. Zhao, Y., Zhong, G.F., Yang, X.P., Hu, X.M., Mao, D.B., and Ma, Y.P. 2015. Bioconversion of lutein to form aroma compounds by Pantoea dispersa. Biotechnol. Lett. 37, 1687-1692. https://doi.org/10.1007/s10529-015-1844-y
  46. Zhu, Y., Luo, Y., Wang, P., Zhao, M., Li, L., Hu, X., and Chen, F. 2016. Simultaneous determination of free amino acids in Pu-erh tea and their changes during fermentation. Food Chem. 194, 643-649. https://doi.org/10.1016/j.foodchem.2015.08.054

Cited by

  1. A Study on the Korean Cultural Gene through Fermented Tea vol.40, pp.None, 2017, https://doi.org/10.21483/qwoaud.40..201806.23