Development and Application of Mobile-Based Math Learning Application

모바일 기반 수학 학습 어플리케이션 개발 및 활용 방안

  • Received : 2017.08.16
  • Accepted : 2017.09.12
  • Published : 2017.09.30

Abstract

The purpose of this study is to develop a mobile-based math learning application and explore its application. In order to develop a learning application, the present study included literature review on math education involving mobile learning, investigation of literature related to mathematics education conducted in a digital environment, and method of use and implementation environment of existing math learning applications by type. Based on these preliminary investigation and analysis, an android version application, 'Mathematics Classroom for Middle School 3rd Graders' was developed. This application can be used for learning units such as Quadratic Functions and Graphs, Representative Value, and Variance and Standard Deviation. For the unit on Quadratic Functions and Graphs, the application was constructed so that students can draw various graphs by using the graphic mode and discuss their work with other students in the chatting room. For the unit on Representative Value, the application was constructed with the mathematical concept of representative value explained through animation along with activities of grouping data acquired after playing archery games by points or arranging them according to size so that students can study when and how to use median value, mode, and average. The application for Variance and Standard Deviation unit was also constructed in a way that allowed students to study the concept of variance and standard deviation and solve the problems on their own. The results of this study can be used as teaching & learning materials customized for individual student in math classes and will provide anyone the opportunity to engage in an interesting self-directed learning of math at anytime. Developed in the format of real life study, the application will contribute to helping students develop a positive attitude about math.

본 연구에서는 학교 수학의 내용을 담아낸 모바일 기반 수학 학습 어플리케이션을 개발하고, 이를 수학 교수 학습 상황에서 활용할 수 있는 방안을 모색하였다. 먼저, 중학교 수학의 '이차함수와 그래프', '대푯값과 산포도' 단원에서 조작을 통한 개념 탐구와 토론 학습이 가능하도록 어플리케이션 <중3수학교실>을 안드로이드 버전으로 수학교육 전문가, 수학 교사, 컴퓨터공학 전문가, 디지털 애니메이션 감독과 협업하여 개발하였다. 이때, 예비교사의 도움을 받아 중학교 3학년 남녀 학생 4명을 대상으로 개발한 어플리케이션을 적용하여 그 활용가능성을 검증하였다. 또한, 수학 수업에 어플리케이션을 활용하는 교수 학습 지도안과 어플리케이션 활용 매뉴얼을 개발하고 중학교 3학년 1개 학급을 대상으로 사례 연구를 실시하여 그 현장 적용 가능성을 모색하였다.

Keywords

References

  1. 고광진(2014). 수학 수업에서 소통을 위한 스마트 기기의 활용방안 연구. 성균관대학교 교육대학원 석사학위논문.
  2. 고상숙, 고호경, 구나영, 김남희, 김리나(2015). 수학교육에서 공학적 도구 : 대한수학교육학회 2015 연보. 경문사
  3. 교육부(2016). 제2차 수학교육 종합 계획(2015-2019). 교육부.
  4. 김남희 (2006). 문제 해결력 신장을 위한 Cabri 3D의 교육적 활용. 수학교육학연구, 16(4), 345-366.
  5. 김부미(2012). 우리나라의 ICT 환경 기반 수학 학습 현황 분석. 교과교육학연구, 16(3), 657-687.
  6. 김부미, 이종희(2012). 미래 수학 교실 기준과 수업 모형의 개발. 한국학교수학회논문집, 15(4), 673-698.
  7. 박수민(2015). 수학교육현장에서 활용 가능한 애플리케이션 연구. 한양대학교 교육대학원 석사학위논문.
  8. 반은섭.류희찬(2017). 동적 기하 환경을 활용한 문제해결 과정에서 변수 이해 및 일반화 수준 향상에 관한 사례연구. 수학교육학연구, 27(1), 89-112.
  9. 손홍찬 (2006). 스프레드시트를 활용한 수학적 모델링 활동에서의 수학적 발견과 정당화. 한국교원대학교 대학원 박사학위논문.
  10. 신윤정(2012). 스마트폰 어플리케이션을 활용한 수학 수업에 관한 연구. 연세대학교 교육대학원 석사학위논문.
  11. 윤정은(2015). 수학 반전 학습(flipped learning)에서 학생들의 참여 양상 및 참여요인탐색. 서울대학교 대학원 석사학위논문.
  12. 양성현, 강옥기(2011). GeoGebra를 활용한 역동적인 시각적 표상에 기반한 이차곡선 지도 방안. 학교수학, 13(3), 447-468.
  13. 이미영 (2011). 수학학습을 위한 모바일 게임형콘텐츠 개발: '수와 연산' 영역을 중심으로. 건국대학교 교육대학원 석사학위논문.
  14. 이은숙, 조정수(2015). 공학 사용의 경험에 근거한 수학교사의 신념 연구: 포커스 그룹 인터뷰. 수학교육, 54(2), 99-117.
  15. 이종희, 김선희, 김부미, 김기연, 김인숙, 박미순, 이소민, 최성이, 안 훈 (2012). 미래형 수학교실 및 수업 모델 개발. 한국과학창의재단 정책연구 2012-5.
  16. 한세호 (2009). 고등학교 수학 학습에서 컴퓨터 대수체계(CAS)의 도구 발생. 건국대학교 대학원 박사학위논문.
  17. 채재선(2013). 스마트폰을 활용한 수학 토론학습이 중학생들에게 미치는 영향. 순천대학교 교육대학원 선사학위논문.
  18. Ally, M., Grimus, M., & Ebner, M.(2014). Preparing teachers for a mobile world to improve access to education. Prospectus. Springer Netherlands, 1-17.
  19. Balacheff, N. (2013). Theory of didactical situations in mathematics. Presentation Feburary 27, 2013. http://www.slideshare.net/TheoRifortel/theory-of-didactical-situations.
  20. Bowker, A. Hennessy, S., Dawes, M. & Deaney, R. (2009). Supporting professional development for ICT use in mathematics using the T-MEDIA multimedia resource. Joubert, M. (Ed.) Proceedings of the British Society for research into Learning Mathematics 29(1), 19-24.
  21. Confrey, J., Hoyles, C., Jones, D., Kahn, K., Maloney, A. P., Nguyen, K. H., Noss, R., & Pratt, D. (2010). Designing software for mathematical engagement through modeling (pp.19-45), InC. Hoyles & Lagrange, J.(Eds.), Mathematics education and technologyrethinking the terrain: the 17th ICMI Study. Springer.
  22. Daher, W. (2010). Building mathematical knowledge in an authentic mobile phone environment. Australasian Journal of Educational Technology, 26(1), 85-104.
  23. Daher, W. & Baya'a, N. (2012). Characteristics of middle school students' learning action in outdoor mathematical activities with the cellular phone. Teaching Mathematics Applications, 31(3), 133-152. https://doi.org/10.1093/teamat/hrr018
  24. disSessa, A. & Cobb, P. (2004). Ontological innovation and the role of theory in design experiments. Journal of the Learning Science, 11(1), 105-121. https://doi.org/10.1207/S15327809JLS1101_4
  25. Decker, E., Meier, B., Christ, A. Hillenbrand, G., Claus, S., & Kosching, R. (2015). Smartphones welcome!:Preparatory Course in Mathematics using the Nobile App MassMatics.(pp.47-60). In H. Crompton & J. Traxler (Eds.). Mobile learning and mathematics: Foundations, Design, and Case studies. Routledge.
  26. Ebner, M. (2015). Mobile applications for math education-How should they be done?(pp.20-32). In H. Crompton & J. Traxler (Eds.). Mobile learning and mathematics: Foundations, Design, and Case studies. Routledge.
  27. Handal, B., El-Khoury, J., Campbell, C., & Cavavagh, M. (2013). A framework for categorizing mobile applications in mathematics education. Proceeding of Australian Conference on Science and Mathematics Education. 142-147.
  28. Moreno-Armella, L. & Santos-Trigo, M. (2016). The use of digital technology in mathematical practices: Reconciling traditional and emerging approaches (pp.595-616). In L. D. English & D. Kirshner (Eds.). Handbook of international research in mathematics education(the 3rd edition). Routledge.
  29. Olley, C. (2011). Modelling, function, and estimation: A pizza problem (pp.163-173). In A. Oldknow, & A., Knights (Eds.) Mathematics Education with Digital Technology. UK: Continuum Publishing Corporation.
  30. Pepin, B., Gueudet, G., Yerushalmy, M., Trouche, L., & Chazan, D. I. (2016). E-Textbooks in/for teaching and learning mathematics(pp.637-661), In L. D. English & D. Kirshner (Eds.). Handbook of international research in mathematics education(the 3rd edition). Routledge.
  31. Pursak, N., Hershkowitz, R., & Schwarz, B.(2011). From visual reasoning to logical necessity through argumentative design. Educational studies in mathematics, Published online: 23 June 2011.
  32. Ozuun-Koca, S. A. & Edwards, T. G. (2015). Students' mathematical conjectures within interacting with a mobile device(pp.150-163). In H. Crompton & J. Traxler (Eds.). Mobile learning and mathematics: Foundations, Design, and Case studies. Routledge.
  33. Sande, C. (2011) A description and characterization of student activity in an open, online, mathematics help forum. Educational studies in mathematics, 77(1), 53-78. https://doi.org/10.1007/s10649-011-9300-y
  34. Sinclair, N., Arzarello, F., Gaisman, M. T., & Lozano, M. D. (2010). Implementing digital technologies at a national scale. In Celia Hoyles & Jean-Baptiste Lagrange(Eds.), Mathematics education and technology-rethinking the terrain. NY: Springer.
  35. Song, D. & Kim, P. (2015). Inquiry-based mobilized math classroom with Stanford mobile inquiry-based learning environment(pp.33-46), In H. Crompton & J. Traxler (Eds.). Mobile learning and mathematics: Foundations, Design, and Case studies. Routledge.
  36. Stone, B. (2012). Flip Your Classroom to Increase Active Learning and Engagement. 28th Annual Conference on Distance Teaching and Learning, Madison, WI.
  37. Tangney, B., Bray, A., & Oldham, E. (2015). Realistic mathematics education, mobile learning and the Bridge21 model for 21st century learning (pp.96-105). In H. Crompton & J. Traxler (Eds.). Mobile learning and mathematics: Foundations, Design, and Case studies. Routledge.
  38. Watson, J. & Fitzallen, N. (2016). Statistical software and mathematics education: Affordance for learning(pp.563-594), In L. D. English & D. Kirshner (Eds.). Handbook of international research in mathematics education(the 3rd edition). Routledge.
  39. Yerushalmy, M. & Botzer, G. (2011). Guiding mathematical inquiry in mobile settings (pp.191-207). In O. Zaslavsky & P. sullivan (Eds.), Constructing knowledge for teaching secondary mathematics. New York: Springer.