DOI QR코드

DOI QR Code

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Pig Manure and Food Waste(II): - Results of the Precision Monitoring -

가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(II) - 정밀모니터링 결과 중심으로 -

  • Lee, Dongjin (Environmental Resource Research Department, National Institute of Environmental Research) ;
  • Moon, HeeSung (Environmental Resource Research Department, National Institute of Environmental Research) ;
  • Son, Jihwan (Environmental Resource Research Department, National Institute of Environmental Research) ;
  • Bae, Jisu (Environmental Resource Research Department, National Institute of Environmental Research)
  • 이동진 (국립환경과학원 폐자원에너지연구과) ;
  • 문희성 (국립환경과학원 폐자원에너지연구과) ;
  • 손지환 (국립환경과학원 폐자원에너지연구과) ;
  • 배지수 (국립환경과학원 폐자원에너지연구과)
  • Received : 2017.06.02
  • Accepted : 2017.09.07
  • Published : 2017.09.30

Abstract

The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. 9 anaerobic digestion facilities which is normally operated during the field survey and 14 livestock manure farms were selected for precision investigation. the physicochemical analysis was performed on the moisture and organic contents, nutrients composition (carbohydrate, fat, protein), volatile fatty acids (VFAs), and nitrogen, etc. Volatile solids (VS) of organic wastes brought into the bio-gasification facilities were 2.81 % (animal manure only) and 5.92 % (animal manure+food waste), respectively. Total solids (TS) reults of samples from livestock farms were 5.6 % in piglets and 11~13 % in other kinds of breeding pigs. The actual methane yield based on nutrients contents was estimated to $0.36Sm^3CH_4/kgVS$ which is equivalent to 72 % of theoretical methane yield value. The optimum mixing ratio depending on the effect of the combined bio-gasification was obtained through the continuous stirred-tank reactor (CSTR) which is operated at different mixing ratio of swine manure and food waste leachate. The range of swine manure and food waste leachate from 60:40 to 40:60 were adequate to the appropriate conditions of anaerobic digestion; less than 100 gTS/, more than alkalinity of 1 gCaCO3/L, C/N ratio 12.0~30.0, etc.

본 연구는 유기성폐자원 (가축분뇨, 음식물류폐기물, 음식물류폐수 등)을 병합 소화하는 시설을 대상으로 적정 설계 기준치를 충족하기 위한 설계 및 운전 기술지침서 마련하고자 현장조사와 정밀모니터링을 실시하였다. 현장조사시 정상적으로 운영 중인 9개의 혐기소화시설과 사육돈 종류에 따른 가축분뇨 발생원 (농가) 14곳을 정밀모니터링 대상으로 선정하였으며 삼성분, 영양성분 (탄수화물, 단백질, 지방), 휘발성지방산, 질소 등에 대한 물리화학적 분석을 실시하였다. 가축분뇨 바이오가스화 시설로 반입되는 유기물의 휘발성고형물 농도는 (Volatile solids, VS) 단독처리시 2.81 %, 음식물류와 병합처리시 5.92 %로 조사되었으며, 유기물분해율은 단독처리 대비 20.5 % 증가된 63.6 %의 제거율을 보였다. 영양물질 결과를 바탕으로 이론적 메탄수율과 실제 현장에서의 메탄수율을 비교한 결과, VS 기준 실제 메탄수율은 이론값 대비 72 %에 해당하는 $0.36Sm^3CH_4/kgVS$로 실측되었다. 농가발생원의 총고형물 농도를 분석한 결과, 자돈 및 이유돈은 5.6 %로 가장 낮았으며 육성돈, 비육돈, 모돈 등은 약 11~13 %로 높은 유기물 함량을 보였다. 또한 가축분뇨에는 모래, 가축털 뭉치 등의 이물질이 존재함으로 혐기소화 과정에서 스크리닝 등의 전처리 과정을 사전에 실시하여야 한다. 음폐수와 가축분뇨의 혼합비율을 달리하여 운전한 연속식 반응기를 통해 병합처리 효과에 따른 적정 혼합비율을 도출하고자 하였다. 연속식 반응기 실험에서 가축분뇨와 음폐수의 혼합비율을 100:0, 80:20, 40:60, 20:80으로 설정하여 진행하였을 때, 60:40~40:60의 범위에서 적정 혐기소화 조건 (100 gTS/L 이하, 알칼리도 1 gCaCO3/L 이상, C/N비 12.0~30.0 등)에 부합하는 실험결과를 도출하였다.

Keywords

References

  1. Ministry of Environment, Economic analysis of waste-to-energy project, (2008).
  2. Ministry of Environment, The status of waste generation and treatment in Korea, (2013).
  3. Ministry of Environment, The status of livestock manure in korea, (2014).
  4. Statistics Korea, 2014 Agriculture, Foresty and Fisheries survey report, (2014).
  5. Ministry of Agriculture, Food and Rural Affairs, Measures for recovery for long-term livestock manure, (2013).
  6. Ministry of Agriculture, Food and Rural Affairs, Energization plan of livestock manure, (2009).
  7. Ministry of Environment, Comprehensive plan of energization and land disposal of food waste leachate[2008-2012], (2007).
  8. Ministry of Environment, Comprehensive plan of energization and land disposal of food waste leachate, (2012).
  9. Ministry of Environment, 2014 Status of organic waste energy utilization facilities, (2014).
  10. Ministry of Environment, Official testing method on wastes, (2012).
  11. Ministry of Food and Drug Safety, Official food testing method. General testing method, (2015).
  12. Ministry of Environment, Official testing method on water, (2014).
  13. American Public Health Association, American Water Works Association, Water Environment Federation, Standard methods for the examination of water and wastewater, 22nd ed. Washington, USA, (1998).
  14. D. J. Lee, Translation of guidelines for biogas production and use in Germany, National Institute of Environmental Research (2014).
  15. Buswell, A. M. and H. F. Mueller, H. F., "Mechanism of methane fermentation", Industrial and Engineering Chemistry, 44(3), pp. 550-552 (1952). https://doi.org/10.1021/ie50507a033
  16. Tchobanoglous, G., Theisen, H., and Vigil, S., Integrated solid waste management, McGraw-Hill, (1993).
  17. Ministry of Environment, Study for preparation of technical guidelines for livestock manure biogasification facilities, (2015).
  18. Sanders, F. A. and Bloodgood D. E., "The effect of nitrogen-to-carbon ratio on anaerobic decomposition, Journal of Water Pollution Control Federation", 37(12), pp. 1741-1752 (1965).
  19. D. J. Lee, Translation of anaerobic sludge digestion operation manual in U.S, National Institute of Environmental Research (2014).
  20. D. J. Lee, Guidelines for operation management of food waste biogasification facilities, National Institute of Environmental Research (2014).
  21. Ministry of Agriculture, Food and Rural Affairs, Fertilizer control ACT, (2015).
  22. Ministry of Environment, Standard design of livestock manure facility, (2009).
  23. K. M. Lee, Y. M. Jo, Characterization of odorous elements in a livestock waste treatment plant, Korean Journal of Odor Research and Engineering, 10(1), pp. 8-17 (2011).
  24. J. H. Kim, J. G. Park, M. S. Moon, J. B. Oh, J. S. Shin, The characteristic and management of odor emitted from pig farms, Korean Journal of Odor Research and Engineering, 10, pp. 201-215 (2009).
  25. Parkin, G. F. and Owen W. F. , "Fundamental of anaerobic digestion of wastewater sludges", J. Environmental Engineering, 112(5), pp. 887-920 (1991).
  26. O'Flaherty, V., Lens P., Leahy B. and Colleran E., "Long-termcompetition between sulfatereducing and methane-produging bacteria during the full-scale treatment of citric acid production wastewater", J. Water Research, 32, pp. 185-196 (1998).