DOI QR코드

DOI QR Code

Fabrication and Characterization of Nano-Sized ZnSe Powders by Hydrothermal Process

수열합성법에 의한 Zinc Selenide 나노 분말 합성 및 미세구조 특성 연구

  • Kim, Mi-So (Department of Interdisciplinary ECO Science, Sungshin University) ;
  • Hong, Hyun-Seon (Department of Interdisciplinary ECO Science, Sungshin University)
  • 김미소 (성신여자대학교 청정융합과학과) ;
  • 홍현선 (성신여자대학교 청정융합과학과)
  • Received : 2017.08.04
  • Accepted : 2017.08.07
  • Published : 2017.09.27

Abstract

Nano-sized Zinc selenide (ZnSe) powder was successfully synthesized using Zn and Se precursors in a hydrothermal process. Temperature for the synthesis was varied from $95^{\circ}C$ to $180^{\circ}C$ to evaluate its influence on the microstructural properties of the synthetic particles. ZnSe powder thus fabricated was characterized using various analytical tools such as SEM, XRD, TEM and UV-Vis methods. Two types of ZnSe particles, that is, the precipitated particle and the colloidal particles, were identified in the analysis. The precipitated particles were around 100 nm in average size, whereas the average size of the colloidal particles was around 20 nm. The precipitated particles made at $150^{\circ}C$ and $180^{\circ}C$ were found to be a single phase of ZnSe; however, an inhomogeneous phase was obtained at the lower synthesis temperature of $95^{\circ}C$, suggesting that the temperature for the synthesis should be over $100^{\circ}C$. The precipitated particles were inactive in the UV-Vis absorption investigation, whereas the colloidal particles showed that absorptions occurred at 380 nm in the UV-Vis spectrum.

Keywords

References

  1. Y. G. Kim, Ceramist, 16, 42 (2013).
  2. H. S. Hong, K. S. Park, C. G. Lee, B. S. Kim, L. S. Kang and Y. H. Jin, J. Korean Powder Metall. Inst., 19, 451 (2012) (in Korean). https://doi.org/10.4150/KPMI.2012.19.6.451
  3. D. Sukanya, R. Mahesh, S. J. Sundaram, M. R. J. Delavictoire and P. Sagayaraj, Pharma Chem., 7, 271 (2015).
  4. A. Valizadeh, H. Mikaeili, M. Samiei, S. M. Farkhani, N. Zarghami, M. Kouhi, A. Akbarzadeh and S. Davaran, Nanoscale Res. Lett., 7, 480 (2012). https://doi.org/10.1186/1556-276X-7-480
  5. R. Indirajith, M. Rajalakshmi, K. ramamurthi, M. Basheer Ahamed and R. Gopalakrishnan, Ferroelectrics, 467, 13 (2014). https://doi.org/10.1080/00150193.2014.874892
  6. P. Y. Yu, T. S. Jeong and Y. J. Shin, J. Korean Crystal Growth. Cryst. Technol., 9, 107 (1999).
  7. J. S. Son and B. Y. Moon, J. Ind. Technol., 3, 189 (2000).
  8. H. S. Kim, C. H. Jin, S. Y. An and C. M. Lee, Bull. Korean Chem. Soc., 33, 398 (2012). https://doi.org/10.5012/bkcs.2012.33.2.398
  9. H. D. Kim, K. H. Choi and D. Y. Yoon, J. Semiconductor Display Equip. Technol., 7, 19 (2008).
  10. A. R. Lee and S. J. Park, Appl. Chem. Eng., 26, 362 (2015). https://doi.org/10.14478/ace.2015.1049
  11. A. R. Lee, J. H. Kim, I. S. Yoo and S. J. Park, J. Chem. Eng., 22, 328 (2011).
  12. G. Xue, W. Chao, N. Lu and S. Xingguang, J. Lumin., 131, 1300 (2011). https://doi.org/10.1016/j.jlumin.2011.03.012
  13. B. K. Song, J. H. Heo and C. S. Hwang, Bull. Korean Chem. Soc., 35, 3601 (2014). https://doi.org/10.5012/bkcs.2014.35.12.3601
  14. K. Senthilkumar, T. Kalaivani, S. Kanagesan and V. Balasubramanian, J. Mater. Sci.: Mater. Electron., 23, 2048 (2012). https://doi.org/10.1007/s10854-012-0701-1
  15. Y. Li, Y. Ding, Y. Qian, Y. Zhang and L. Yang, Inorg. Chem., 37, 2844 (1998). https://doi.org/10.1021/ic9800637
  16. J. Wang and Q. Yang, Cryst. Growth Des., 8, 660 (2008). https://doi.org/10.1021/cg7008946
  17. X. Liu, J. Ma, P. Peng and W. Zheng, Langmuir, 26, 9968 (2010). https://doi.org/10.1021/la1000182
  18. C. S. Hwang and I. H. Cho, Bull. Korean Chem. Soc., 26, 1776 (2005). https://doi.org/10.5012/bkcs.2005.26.11.1776
  19. B. Ghosh and N. Shirahata, Sci. Technol. Adv. Mater., 15, 014207 (2014). https://doi.org/10.1088/1468-6996/15/1/014207
  20. K. Saikia, P. Deb and E. Kalita, Current Appl. Phys., 13, 925 (2013). https://doi.org/10.1016/j.cap.2013.01.042
  21. F. Mirnajafizadeh, D. Ramsey, S. McAlpine, F. Wang, P. Reece and J. A. Stride, Mater. Sci. Eng. C, 64, 167 (2016). https://doi.org/10.1016/j.msec.2016.03.061
  22. J. J. Andrade, A. G. Brasil Jr., P. M. A. Farias, A. Fontes and B. S. Santos, Microelectron. J., 40, 641 (2009). https://doi.org/10.1016/j.mejo.2008.06.040
  23. K. L. Mock, L. M. V. Tillekeratne and J. R. Kirchhoff, Inorg. Chem. Commun., 60, 87 (2015). https://doi.org/10.1016/j.inoche.2015.07.012