DOI QR코드

DOI QR Code

Numerical simulation of dense interflow using the k-ε turbulence model

k-ε 난류모형을 이용한 중층 밀도류의 수치모의

  • Choi, Seongwook (Department of Civil & Environmental Engineering, Yonsei University) ;
  • Choi, Sung-Uk (Department of Civil & Environmental Engineering, Yonsei University)
  • 최성욱 (연세대학교 토목환경공학과) ;
  • 최성욱 (연세대학교 토목환경공학과)
  • Received : 2017.05.16
  • Accepted : 2017.07.31
  • Published : 2017.09.30

Abstract

This study presents a numerical model for simulating dense interflows. The governing equations are provided and the finite difference method is used with the $k-{\varepsilon}$ turbulence model. The model is used to simulate a dense interflow established in a deep ambient water, resulting velocity and excess density profiles. It is observed that velocity decreases in the longitudinal direction due to water entrainment in the vicinity of the outlet and rarely changes for increased Richardson number. Similarity collapses of velocity and excess density are obtained, but those of turbulent kinetic energy and dissipation rate are not. A shape factor for the dense interflow is obtained from the simulated profiles. The value of this shape factor can be used in the layer-averaged modeling of dense interflows. In addition, a buoyancy-related parameter ($c_{3{\varepsilon}}$) for the $k-{\varepsilon}$ model and the volume expansion coefficient (${\beta}_0$) are obtained from the simulated results.

본 연구에서는 중층 밀도류를 모의할 수 있는 $k-{\varepsilon}$ 난류모형의 지배방정식을 제시하고 수치모의를 수행하였다. 깊은 수체에 모형을 적용하여 중층 밀도류를 모의하고 게산된 유속과 초과밀도 분포를 분석하였다. 밀도류의 주 흐름방향을 따라 물 연행으로 인해 유속이 감소되는 것과 Richardson 수의 증가로 인해 유속 변화율이 감소되는 것을 관찰하였다. 유속과 초과밀도의 유사성을 확인하였으나, 난류운동에너지와 소산율의 유사성에서는 보이지 않았다. $k-{\varepsilon}$ 모형의 모의 결과를 이용하여 중층 밀도류의 층적분 모형에서 사용될 수 있는 형상계수를 계산하였다. 또한, 층적분 모형을 이용하여 $k-{\varepsilon}$ 모형에서 사용되는 부력관련 모형상수 ($c_{3{\varepsilon}}$)와 부피팽창계수 (${\beta}_0$)를 계산하였다.

Keywords

References

  1. Altinakar, S., Graf, W. H., and Hopfinger, E. J. (1990). "Weakly depositing turbidity current on a small slope." Journal of Hydraulic Research, Vol. 28, No. 1, pp. 55-80. https://doi.org/10.1080/00221689009499147
  2. An, S., and Julien, P. Y. (2014). "Three-dimensional modeling of turbid density currents in Imha reservoir, South Korea." Journal of Hydraulic Engineering, Vol. 140, No. 5, p. 05014004. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000851
  3. Britter, R. E., and Linden, P. F. (1980). "The motion of the front of gravity current travelling down an incline." Journal of Fluid Mechanics, Vol. 99, pp. 531-543. https://doi.org/10.1017/S0022112080000754
  4. Cao, Z., Li, J., Pender, G., and Liu, Q. (2015). "Whole-process modeling of reservoir turbidity currents by a double layer-averaged model." Journal of Hydraulic Engineering, Vol. 141, No. 2, p. 04014069. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000951
  5. Choi, S., and Choi, S.-U. (2017). "A numerical simulation of propagating turbidity currents using the ULTIMATE scheme." Journal of Korea Water Resources Association, Vol. 49, No. 1, pp. 55-64.
  6. Choi, S.-U., and Garcia, M. H. (1995). "Modeling of one-dimensional turbidity currents with a dissipative-Galerkin finite element method." Journal of Hydraulic Research, Vol. 33, No. 5, pp. 623-648. https://doi.org/10.1080/00221689509498561
  7. Choi, S.-U., and Garcia, M. H. (2002). "Turbulence modeling of density currents developing two-dimensionally on a slope." Journal of Hydraulic Engineering, Vol. 128, No. 1, pp. 55-63. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(55)
  8. Chong, S.-A., Yi, H.-S., Lee, S.-Y., Lee, Y.-S., and Kim, D.-S. (2016). "Selecting the optimal location of debris containment booms in a reservoir using a ELCOM model." Conference of Korea Water Resources Association 2016, p. 23.
  9. Chung, S. W., Hipsey, M. R., and Imberger, J. (2009). "Modelling the propagation of turbid density inflows into a stratified lake: Daecheong reservoir, Korea." Environmental Modelling and Software, Vol. 24, No. 12, pp. 1467-1482. https://doi.org/10.1016/j.envsoft.2009.05.016
  10. Ferziger, J. H., and Peric, M. (1996). Computational methods for fluid dynamics. Springer Verlag, Berlin, Germany.
  11. Fukushima, Y., and Hayakawa, N. (1990). "Analysis of inclined wall plume by the k-${\varepsilon}$ turbulence model." Journal of Applied Mechanics, Vol. 57, pp. 455-465. https://doi.org/10.1115/1.2892011
  12. Garcia, M. H. (1990). Depositing and eroding sediment-driven flows: turbidity currents. University of Minnesota, Minneapolis, Minnesota, USA.
  13. Gibson, M., and Launder, B. (1976). "Ground effects on pressure fluctuations in the atmospheric boundary layer." Journal of Fluid Mechanics, Vol. 86, No. 3, pp. 491-511. https://doi.org/10.1017/S0022112078001251
  14. Hossain, M. S., and Rodi, W. (1982). "Turbulence model for buoyant flows and its application to vertical buoyant jets." Turbulent buoyant jets and plumes, Edited by W. Rodi, Pergamon Press, Oxford, pp. 121-178.
  15. Kostic, S., and Parker, G. (2003). "Progradational sand-mud deltas in lakes and reservoirs. part 1. theory and numerical modeling." Journal of Hydraulic Research, Vol. 41, No. 2, pp. 127-140. https://doi.org/10.1080/00221680309499956
  16. Lai, Y. G., Huang, J., and Wu, K. (2015). "Reservoir turbidity current modeling with a two-dimensional layer-averaged model." Journal of Hydraulic Engineering, Vol. 141, No. 12, p. 04015029. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001041
  17. Launder, B. E. (1975). "On the effects of a gravitational field on the turbulent transport of heat and momentum." Journal of Fluid Mechanics, Vol. 67, pp. 569-581. https://doi.org/10.1017/S002211207500047X
  18. Ohey, C. D., and Schleiss, A. J. (2007). "Control of turbidity currents in reservoirs by solid and permeable obstacles." Journal of Hydraulic Engineering, Vol. 133, No. 6, pp. 637-648. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(637)
  19. Paik, J., Eghbalzadeh, A., and Sotiropoulos, F. (2009). "Three-dimensional unsteady RANS modeling of discontinuous gravity currents in rectangular domains." Journal of Hydraulic Engineering, Vol. 135, No. 6, pp. 505-521. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000034
  20. Parker, G., Garcia, M., Fukushima, Y., and Yu, W. (1987). "Experiments on turbidity currents over an erodible bed." Journal of Hydraulic Research, Vol. 25, No. 1, pp. 123-147. https://doi.org/10.1080/00221688709499292
  21. Rodi, W. (1984). Turbulence models and their applications in hydraulics. International Association for Hydraulic Research, Delft, The Netherlands, Monograph.
  22. Ryu, I. G., Chung, S. W., and Yoon, S. W. (2011). "Modelling a turbidity current in Soyang reservoir (Korea) and its control using a selective withdrawal facility." Water Science and Technology, Vol. 63, No. 9, pp. 1864-1872. https://doi.org/10.2166/wst.2011.397
  23. Stacey, M. W., and Bowen, A. J. (1988). "The vertical structure of density and turbidity currents: theory and observations." Journal of Geophysical Research: Oceans, Vol. 93, No. C4, pp. 3528-3542. https://doi.org/10.1029/JC093iC04p03528
  24. Svensson, U. (1980). On the numerical prediction of vertical turbulent exchange in stratified flows. Proceeding of 2nd International Symposium on Stratified Flows, Trodheim, Norway.