DOI QR코드

DOI QR Code

In vitro Antioxidant Activity of Ogae (Korean Native Black Fowl) Egg White Protein Hydrolysates Fractionated by Ultrafiltration

오계란 단백질 가수 분해물 제조 및 한외여과 분획물의 in vitro 항산화 활성 특성

  • Ha, Yoo Jin (Department of Food and Biotechnology, Joongbu University) ;
  • Kim, Seul Ki (Department of Food and Biotechnology, Joongbu University) ;
  • Yoo, Sun Kyun (Department of Food and Biotechnology, Joongbu University)
  • 하유진 (중부대학교 식품생명과학과) ;
  • 김슬기 (중부대학교 식품생명과학과) ;
  • 유선균 (중부대학교 식품생명과학과)
  • Received : 2017.08.02
  • Accepted : 2017.09.10
  • Published : 2017.09.30

Abstract

Protein hydrolysates derived from plants and animals having antioxidant, suppression of hypertension, immunodulatory, alleviation of pain, and antimicrobial activity has been known as playing important role like hormone. This study was fractioned to hydrolysis of Ogae egg white protein using the ultrafiltration. The antioxidant activity of the produced peptides was analyzed. As a result, the maximum value of DPPH radical scavenging was 1 kDa(70.83 %), hydroxy radical scavenging was 5 kDa(47.01 %), superoxide anion radical scavenging was 5 kDa(40.57 %), and $Fe^{2+}$ chelation ability was 5 kDa(29.87 %). Furthermore, the antioxidant Inhibition concentration ($IC_{50}$) of peptides was evaluated for each fraction. As a result, the maximum value of HDS was superoxide anion radical scavenging($IC_{50}$, 5.42 mg/ml). 1 kDa was $Fe^{2+}$ chelation ability($IC_{50}$, 1.67 mg/ml), 5 kDa was $Fe^{2+}$ cheating ability($IC_{50}$, 2.09 mg/ml), 10 kDa was $Fe^{2+}$ cheating ability($IC_{50}$, 2.61 mg/ml), papain was $Fe^{2+}$ cheating ability($IC_{50}$, 4.53 mg/ml). Therefore, we expect that peptides produced from Ogae egg white protein using 5 kDa fraction are useful as an antioxidant functional food ingredients.

식물 및 동물성 단백질 유래 펩타이드 형태의 단백질 가수 분해물들은 항산화, 고혈압 완화, 면역조절, 진통완화 및 항균작용 등 생리활성이 있는 것으로 알려져 왔다. 본 연구는 연산오계란 단백질 가수 분해물을 Ultrafiltration를 이용하여 HDS(분획되지 않은 가수 분해물), 1 kDa, 5 kDa, 10 kDa, 50 kDa로 분획된 기능성 펩타이드의 DPPH radical scavenging activity, superoxide anion radical scavenging activity, hydroxyl radical scavenging activity 및 $Fe^{2+}$ chelation ability을 평가하였다. 그 결과 DPPH radical scavenging activity 최대값은 1 kDa(70.83 %), hydroxyl radical scavenging activity 최대값은 5 kDa (47.01 %), superoxide anion radical scavenging activity 최대값은 5 kDa(40.57 %), $Fe^{2+}$ chelation ability 최대값은 5 kDa(29.87 %)로 나타났다. Ultrafiltration를 이용하여 fractionation된 단백질 가수 분해물의 항산화 저해 능력 $IC_{50}$ 평가하였다. 그 결과 HDS의 최대값은 superoxide anion radical scavenging activity($IC_{50}$, 5.42 mg/ml)이고, 1 kDa의 최대값은 $Fe^{2+}$ chelation ability($IC_{50}$, 1.67 mg/ml)이고, 5 kDa의 최대값은 $Fe^{2+}$ chelation ability($IC_{50}$, 2.09 mg/ml)이고, 10 kDa의 최대값은 $Fe^{2+}$ chelation ability($IC_{50}$, 2.61 mg/ml)이고, 50 kDa의 최대값은 $Fe^{2+}$ chelation ability($IC_{50}$, 4.53 mg/ml)이다. 그러므로 본 연구 결과를 바탕으로 5 kDa를 이용하여 오계란 단백질에서 분획한 펩타이드는 항산화 기능성 식품소재로서 활용할 가치가 높을 것으로 기대한다.

Keywords

References

  1. E. Salminen, J. Rintala, "Anaerobic digestion of organic solid poultry slaughterhouse waste a review", Bioresour. Technol, Vol. 83, pp. 13-26, (2002). https://doi.org/10.1016/S0960-8524(01)00199-7
  2. RC. Clark, "The primary structure of avian phosvitins. Contributions through the Edman degradation of methylmercaptovitins prepared from the constituent phosphoproteins". Int. J. Biochem. Vol. 17, pp. 983-988, (1985). https://doi.org/10.1016/0020-711X(85)90243-5
  3. G. Tarborsky, Interaction between phosvitin and iron and its effect on a rearrangement of phosvitin structure, Biochem.-US, Vol. 2, pp. 266-271, (1963). https://doi.org/10.1021/bi00902a010
  4. I. Choi, C. Jung, H. Seog, H. Choi, "Purification of phosvitin from egg yolk and determination of its physicochemical properties". Food Sci. Biotechnol. Vol. 13, pp. 434-437, (2004).
  5. S.K. Lee, J.H. Han, E. A. Decker, "Antioxidant activity of phosvitin in phosphatidylcholine liposomes and meat model systems". J. Food Sci. Vol. 67, pp. 37-41, (2002). https://doi.org/10.1111/j.1365-2621.2002.tb11355.x
  6. K. Elavarasan, B.A. Shamasundar, B. Faraha, H. Howell, "Angiotensin I-converting enzyme (ACE) inhibitory activity and structural properties of ovenand freeze-dried protein hydrolysate from fresh water fish (Cirrhinus mrigala)", Food Chemistry, Vol. 206, pp. 210-216, (2016). https://doi.org/10.1016/j.foodchem.2016.03.047
  7. I.V. Nikolaev, S. Sforza, F. Lambertini, D.Y. Ismailova, V.P. Khotchenkov, V.G. Volik, A. Dossena, V.O. Popov, O.V. Koroleva, "Biocatalytic conversion of poultry processing leftovers: Optimization of hydrolytic conditions and peptide hydrolysate characterization", Food Chemistry, Vol. 197, pp. 611-621, (2016). https://doi.org/10.1016/j.foodchem.2015.10.114
  8. Y.Y. Sun, D.D. Pan, Y.X. Guo, J.J. Li, "Purification of chicken breast protein hydrolysate and analysis of its antioxidant activity", Food and Chemical Toxicology, Vol. 50, pp. 3397-3404, (2012). https://doi.org/10.1016/j.fct.2012.07.047
  9. T. Mesut, E. Nevzat, O Serkan, "Efficient production of l-lactic acid from chicken feather protein hydrolysate and sugar beet molasses by the newly isolated Rhizopus oryzae TS-61Original", Food and Bioproducts Processing, Vol. 90, pp. 773-779, (2012). https://doi.org/10.1016/j.fbp.2012.05.003
  10. F. Nahed, K. Naourez, H. Anissa, H.M. Ibtissem, D. Ines, N. Moncef, "Total solubilisation of the chicken feathers by fermentation with a keratinolytic bacterium, Bacillus pumilus A1, and the production of protein hydrolysate with high antioxidative activity", Process Biochemistry, Vol. 46, pp. 1731-1737, (2012).
  11. O. John, O.G. Abraham, T.M. Sunday, A.A. Rotimi, E.A. Michel, "Kinetics of in vitro renin and angiotensin converting enzyme inhibition by chicken skin protein hydrolysates and their blood pressure lowering effects in spontaneously hypertensive rats", Journal of Functional Foods, Vol. 14, pp. 133-143, (2015). https://doi.org/10.1016/j.jff.2015.01.031
  12. S. Jain, A.K. Anal, "Optimization of extraction of functional protein hydrolysates from chicken egg shell membrane (ESM) by ultrasonic assisted extraction (UAE) and enzymatic hydrolysis", LWT - Food Science and Technology, Vol. 69, pp. 295-302, (2016). https://doi.org/10.1016/j.lwt.2016.01.057
  13. L. Vandanjon, S. Cros, P. Jaouen, F. Quemeneur, P. Bourseau, "Recovery by nanofiltration and reverse osmosis of marine flavours from seafood cooking waters". Desalination, Vol. 144, No.1-3, pp. 379-385, (2002). https://doi.org/10.1016/S0011-9164(02)00347-8
  14. Z.Y. Li, A.H. Kittikun, W. Youravong, "Separation of protease from yellowfin tuna spleen extract by ultrafiltration: Effect of hydrodynamics and gas sparging on flux enhancement and selectivity", Journal of Membrane Science, Vol. 311, No. 1-2, pp. 104-111, (2008). https://doi.org/10.1016/j.memsci.2007.11.057
  15. L. Chabeaud, P. Vandanjon, P. Bourseau, M. Jaouen, F. Chaplain-Derouiniot, "Guerard Performances of ultrafiltration membranes for fractionating a fish protein hydrolysate: Application to the refining of bioactive peptidic fractions", Separation and Purification Technology, Vol. 66, No. 3, pp. 463-471, (2009). https://doi.org/10.1016/j.seppur.2009.02.012
  16. K.C. Hsu, E.C.Y. Li-Chan, C.L. Jao, "Antiproliferative activity of peptides prepared from enzymatic hydrolysates of tuna dark muscle on human breast cancer cell line MCF-7", Food Chemistry, Vol. 126, No. 2, pp. 617-622, (2011). https://doi.org/10.1016/j.foodchem.2010.11.066
  17. S.S. Pitchumoni, P.M. Doraiswamy, "Current status of antioxidant therapy for Alzheimer's disease", J Am Geriatr Soc., Vol. 46, pp. 1566-1572. (1998). https://doi.org/10.1111/j.1532-5415.1998.tb01544.x
  18. M.S. Blois, "Antioxidant determinations by the use of a stable free radica", Nature, Vol. 18, pp. 1000, (2004).
  19. X.B. Fan, C.J. Li, D.N. sha, "The establishment of o-phenanthroline chemiluminescent system for measuring OH radica", Basic Medical Sciences and Clinics. Vol. 18, No. 6, pp. 468-471. (1998).
  20. W. Yu, Y. Zhao, Z. Xue, H. Jin, D. Wang, "The antioxidant properties of lycopene concentrate extracted from tomato paste", Journal of the American oil Chemists Society. Vol. 78, No. 7, pp. 697-701. (2001). https://doi.org/10.1007/s11746-001-0328-6
  21. I. Gulcin, "Antioxidant activity of caffeic acid (3,4 dihydroxycinnamic acid)". Toxicol., Vol. 217, No. 2, pp. 213-220, (2006). https://doi.org/10.1016/j.tox.2005.09.011
  22. I. Gulcin, D. Berashvili, A. Gepdiremen, "Antiradical and antioxidant activity of total anthocyanins from Perilla pankinensis decne", J. Ethmopharmacol., Vol. 101, No. 1-3, pp. 287-293, (2005). https://doi.org/10.1016/j.jep.2005.05.006
  23. R.E. Aluko, E. Monu, "Functional and bioactive properties of quinoa seed protein hydrolysates", Journal of Food Science, Vol. 68, pp. 1254-1258. (2003). https://doi.org/10.1111/j.1365-2621.2003.tb09635.x
  24. A.T. Girgih, C.C. Udenigwe, R.E. Aluko, "In vitro antioxidant properties of hemp seed (Cannabis sativa L.) protein hydrolysate fractions", Journal of the American Oil Chemists Society, Vol. 88, pp. 381-389, (2010).
  25. I. Batista, C. Ramos, J. Coutinho, N.M. Bandarra,M.I. Nunes, "Characterisation of protein hydrolysates and lipids obtained from blackscabbard fish (Aphanopus carbo) by-products and antioxidative activity of the hydrolysates produced", Process Biochemistry, Vol. 45, pp. 18-24, (2009).
  26. S.N. Jamdar, V. Rajalakshmi, A. Sharma, "Antioxidant and ACE inhibitory properties of poultry viscera protein hydrolysate and its peptide fractions". Journal of Food Biochemistry, Vol. 36, pp. 494-501, (2012). https://doi.org/10.1111/j.1745-4514.2011.00562.x
  27. C.C. Udenigwe, Y.L. Lu, C.H. Han, W.C. Hou, R.E. Aluko, "Flaxseed protein-derived peptide fractions: Antioxidant properties and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages". Food Chemistry, Vol. 116, pp. 277-284, (2009). https://doi.org/10.1016/j.foodchem.2009.02.046
  28. H.C. Wu, H.M. Chen, C.Y. Shiau, "Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomberaustiasicus)". Food Research International, Vol. 36, pp. 949-957, (2003). https://doi.org/10.1016/S0963-9969(03)00104-2
  29. S. Sakanaka, Y. Tachibana, Y. Okada, "Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha)". Food Chemistry, Vol. 89, pp. 569-575, (2005). https://doi.org/10.1016/j.foodchem.2004.03.013
  30. H. Agrawal, R. Joshi, M. Gupta, "Isolation, purification and characterization of antioxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate", Food Chemistry, Vol. 204, pp. 365-372, (2016). https://doi.org/10.1016/j.foodchem.2016.02.127
  31. T.Y. Kim, T.W. Jeon, S.H. Yeo, S.B. Kim, J.S. Kim, J.S. Kwak, "Antimicrobial, antioxidant and SOD-like activity effect of Jubak extracts", Korean J Food Nutr, Vol. 23, pp. 299-305, (2010).
  32. H.W. Kang, "Antioxidative activity of extracts from Cichorium endivia L.", J Korean Soc Food Sci Nutr, Vol. 41, pp. 1487-1492, (2012). https://doi.org/10.3746/jkfn.2012.41.11.1487
  33. K. Kitani, C. Minami, T. Yamamoto, S. Kanai, G.O. Ivy, M.C. Carrillo, "Pharmacological interventions in aging and age-associated disorders : potentials of propargylamines for human use". Ann N Y Acad Sci, Vol. 959, pp. 295-307, (2002). https://doi.org/10.1111/j.1749-6632.2002.tb02101.x
  34. D.X. Jin, X.L. Liu, X.Q. Zheng, X.J. Wang, J.F. He, "Preparation of antioxidative corn protein hydrolysates, purification and, evaluation of three novel corn antioxidant peptides", Food Chemistry 204, pp.427-436, (2016). https://doi.org/10.1016/j.foodchem.2016.02.119
  35. H.M. Li, X. Hu, P. Guo, P. Fu, L. Xu, X.Z. Zhang, "Antioxidant properties and possible mode of action of corn protein peptides and zein peptides". Journal of Food Biochemistry, Vol. 34, pp. 44-60. (2010). https://doi.org/10.1111/j.1745-4514.2009.00292.x
  36. M.Y. Yoo, S.K. Kim, J.Y. Yang, "Characterization of an antioxidant from sporophyll of Undaria pinnatifida", Korean J Microbiol Biotechnol, Vol. 32, pp. 307-311, (2004).
  37. E. Graf, J.W. "Eaton Antioxidant functions of phytic acid", Free Radic Biol Med, Vol. 8, pp. 61-69, (1990). https://doi.org/10.1016/0891-5849(90)90146-A
  38. A. Saiga, S. Tanabe, T. Nishimura, "Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment". Journal of Agricultural and Food Chemistry, 51, pp. 3661-3667, (2003). https://doi.org/10.1021/jf021156g
  39. A.T. Girgih, C.C. Udenigwe, R.E. Aluko, "In vitro antioxidant properties of hemp seed (Cannabis sativa L.) protein hydrolysate fractions". Journal of the American Oil Chemists Society, Vol. 88, pp. 381-389. (2010).
  40. D. Huang, B. Ou, R.L. Prior, "The chemistry behind antioxidant capacity assays". Journal of Agricultural and Food Chemistry, Vol. 53, pp. 1841-1856, (2005). https://doi.org/10.1021/jf030723c